• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How plants ensure regular seed spacing

Bioengineer by Bioengineer
September 11, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plant research: publication in Current Biology

IMAGE

Credit: HHU / Nozomi Kawamoto

If you open up a pea pod, you will find that all of the peas inside are the same size and the same distance apart. The same is true of princess beans, runner beans and soybeans as well as various other peas and beans, and it also applies to non-pulses. This is surprising because both the seed size and number and the pod size differ substantially from one variety to the next.

A team of researchers based in Germany, Australia, Japan, the USA and Italy under the supervision of Prof. Dr. Rüdiger Simon from HHU’s Institute of Developmental Genetics has analysed the genetic mechanisms behind this phenomenon. The team used different wild varieties of thale cress to examine the genetic processes taking place behind the initiation of ovules – the primordia from which seeds emerge after fertilisation – and the growth of the pod. These wild varieties are sourced from different locations. Thale cress or Arabidopsis thaliana is a model plant used in biology. Prof. Simon commented: “The individual seeds compete with each other for nutrients. To ensure that each seed gets an equal supply and can develop well, it is important that the seeds are spread as evenly as possible at equal distances in the pod.”

There is considerable variation in fruit size and seed number even amongst the different wild varieties of Arabidopsis thaliana. However, the researchers also discovered a uniform genetic mechanism that controls seed position in the pod regardless of environmental factors such as temperature.

The team established that seed formation is controlled by several signalling pathways at precisely defined positions. These signalling pathways are activated by small secreted proteins from the EPFL family. These peptides are detected on the cell surface by receptors from the ERECTA family. One of the peptides, EPFL2, is formed between the developing ovules, where it adjusts the spacing between the seeds. Where this peptide is not present, the researchers found irregular spacing – meaning that adjacent seeds compete more for nutrients – or even ovule twinning, which generally results in neither ovule developing fully. EPFL2 and a very closely related peptide, EPFL9, also control fruit development. As a result, seed formation is closely linked to pod growth.

Dr. Nozomi Kawamoto, the first author of the study, highlighted another aspect: “The same signalling substances and receptors that we have identified as being responsible for relative pod size and seed spacing are also in charge of the spacing of leaf stomata and the microstructure of serrated leaves.” A plant uses the stomata to regulate the exchange of gases with its environment. Dr. Kawamoto is carrying out post-doctoral research at Prof. Simon’s Institute as part of the Cluster of Excellence on Plant Sciences CEPLAS in Düsseldorf.

###

Original publication

Nozomi Kawamoto, Dunia Pino Del Carpio, Alexander Hofmann, Yoko Mizuta, Daisuke Kurihara, Tetsuya Higashiyama, Naoyuki Uchida, Keiko U. Torii, Lucia Colombo, Georg Groth, and Rüdiger Simon: A peptide pair coordinates regular ovule initiation patterns with seed number and fruit size. Current Biology 10 September 2020

DOI: 10.1016/j.cub.2020.08.050

Media Contact
Dr. Arne Claussen
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2020.08.050

Tags: AgricultureBiology
Share12Tweet8Share2ShareShareShare2

Related Posts

SVTopo: Visualizing Complex Structural Variants

SVTopo: Visualizing Complex Structural Variants

October 9, 2025
Europe’s Largest Bats Hunt and Consume Migrating Birds Mid-Flight High Above the Ground

Europe’s Largest Bats Hunt and Consume Migrating Birds Mid-Flight High Above the Ground

October 9, 2025

Young Birds Acquire Vital Life Skills from Older Siblings and Flock Members, Study Finds

October 9, 2025

Innovative Biosensor Monitors Plant Immune Hormone Dynamics in Real Time

October 9, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1175 shares
    Share 469 Tweet 293
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain & Behavior Research Foundation Hosts 2025 International Symposium on Advances in Mental Health Research

Scientists Develop Model to Advance Sustainable Design, Groundwater Management, and Nuclear Waste Storage

Optimizing Lithium Extraction from Oilfield Brine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.