• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How plant cells regulate growth shown for the first time

Bioengineer by Bioengineer
January 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have managed to show how the cells in a plant, a multicellular organism, determine their size and regulate their growth over time. The findings overturn previous theories in the field and are potentially significant for the future of agriculture and forestry — as it reveals more about one of the factors which determine the size of plants and fruits.

"We have looked at how the cells in a multicellular organism regulate their size and this is the first time it has been done. We can show that the mechanism which leads to the maintenance of the cell size over generations is a combination of what has been found in yeast and bacteria", explains Henrik Jönsson, who specialises in computational biology and biological physics at Lund University in Sweden.

Similar studies have previously only been conducted on single cell organisms, such as bacteria and yeast. Now Henrik Jönsson, together with colleagues in the US and UK, has studied the apical meristem of a plant, thale cress (Arabidopsis thaliana). The researchers investigated cell division in this stem cell niche and succeeded in mapping how the cells determine their size and adjust their growth so that cell size is homogeneous over time.

Cells in single-cell systems such as bacteria and yeast do not change size over time. Yeast cells divide when they reach a critical size, whereas bacteria such as E. coli increase by a constant volume between cell divisions. In the latter case, small cells become larger, and large cells relatively smaller in the next generation. This means that the cells end up the same size when considered over several generations.

The researchers have worked on developing a method that follows growth and cell division within the living plant, using what is known as confocal microscopy. New fluorescent markers and a new microscopy protocol have been developed. In addition, new computational algorithms identify, segment and track cells over time.

"This has allowed us to quantify cell size and growth with a higher resolution than anyone managed previously. We have also developed mathematical models for analyzing hypotheses about various rules which could determine cell size", says Henrik Jönsson.

Recently, the researchers showed that the size of the meristem is significant for the number of stem cells present. Now they are pursuing their research by investigating whether, and if so, how the size of the meristem affects the size of the plant itself. Henrik Jönsson describes this as a multidisciplinary method which will lead to biology becoming comprehensible on a much more detailed level than previously possible.

###

Media Contact

Henrik Jönsson
[email protected]
46-707-235-175
@lunduniversity

http://www.lu.se

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.