• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How plankton cope with turbulence

Bioengineer by Bioengineer
March 15, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © ETH Zürich

Microscopic marine plankton are not helplessly adrift in the ocean. They can perceive cues that indicate turbulence, rapidly respond to regulate their behaviour and actively adapt. ETH researchers have demonstrated for the first time how they do this .

Plankton in the ocean are constantly on the move. By day, these tiny organisms, one-tenth the diameter of a human hair, actively migrate towards the sunlit ocean surface to carry out photosynthesis. At night, they make their way to depths of tens of metres, where the supply of nutrients is greater.

During their regular trips between well-lit and nutrient-rich zones, plankton cells frequently encounter turbulent layers, which disrupt this essential migratory pattern. It is still a mystery how these minute organisms can navigate through the dangers of turbulent waters. Plankton cells are whirled around by turbulence — particularly by the smallest, millimetre-sized flow vortices — as if they were in a miniature washing machine, which can induce permanent damage to their propulsion appendages and cell envelope. In the worst case, they can perish in turbulence.

Migratory behaviour observed in micro-chambers

Certain microalgae have, however, developed a sophisticated response to such turbulent cues. Post-doctoral researchers Anupam Sengupta and Francesco Carrara, together with their advisor Roman Stocker, Professor at the ETH Zurich Institute of Environmental Engineering, have shown this in a study recently published in the journal Nature.

Using laboratory experiments, the three scientists "brought the ocean into the lab" and examined the migratory behaviour of Heterosigma akashiwo, an alga known for forming toxic algal blooms. To examine swimming behaviour, the researchers used a microfabricated chamber, just a few cubic millimetres in volume, in which they introduced the Heterosigma cells. The chamber could be rotated along its axis using a computer-controlled motor, exposing cells to periodic flips in orientation replicating how tiny turbulent vortices flip the cells upside down in the ocean.

Diving with foresight

The scientists were able to observe that an algal population moving upwards split into two equally sized groups over a period of 30 minutes after the chamber was repeatedly flipped by 180 degrees. One group of cells continued to strive upwards, whereas the other group switched behaviour and began to swim in the opposite direction. This population split did not occur with algae in stationary chambers, in which all swam continuously upwards and accumulated near the top surface.

By zooming into single cells, the researchers discovered the reason for the change in swimming behaviour. When exposed to the turbulence-like cues, the cells were able to actively and rapidly change their shape: from asymmetric pear-shaped cells swimming upwards, the cells morphed into egg-shaped structures swimming downwards. Strikingly, this shift involved changes of less than a micrometre. "It is spectacular that a cell barely 10 micrometres in size can adapt its shape to change its swimming direction," says the study's co-author Francesco Carrara.

Perfect adaptation

Roman Stocker does not view this mechanism as just a coincidence. "The algae have adapted perfectly to their ocean habitat: they can actively swim, they perceive a range of different environmental signals, including turbulence, and they rapidly adapt and regulate their behaviour accordingly." Anupam Sengupta adds: "We now better understand how these microorganisms confront potentially detrimental situations, however, at the moment we can only speculate as to why the cells do this."

The researchers argue that splitting into two groups creates an evolutionary advantage for the population: in this manner, the entire population is not lost when it encounters a layer of strong turbulence, but in the worst case, only half. In avoiding the turbulence by diving, the downward-swimming cells suffer the short-term cost of receiving too little light to carry out photosynthesis, meaning that they cannot grow. The researchers also found evidence that the flipping by turbulence has a physiological impact on the algae. Cells that were flipped in their experiment exhibited higher levels of stress than those in the stationary chambers.

Climate change influences turbulence

The researchers now plan to observe the algae in a larger tank, where they will expose the cells not only to flipping but also to real turbulence. Understanding how these minute cells respond to turbulence holds great importance for our understanding of the ocean. "As we now know that global climate change will modify the turbulence landscape in the ocean, it is particularly important to understand how the organisms that are the foundation of the marine food web respond to it. This work contributes a piece of the puzzle, by demonstrating that phytoplankton are not just at the mercy of turbulence, but can actively cope with it," says the ETH professor.

###

Media Contact

Prof. Roman Stocker
[email protected]
41-446-337-086
@ETH_en

http://www.ethz.ch/index_EN

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Glioblastoma Cells Break Away from Neighbors to Boost Their Lethality

September 18, 2025
Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

September 18, 2025

Link Between Oral Microbiome and Elevated Pancreatic Cancer Risk Uncovered

September 18, 2025

New Study Identifies Top Three Deadliest Risk Factors for Common Liver Disease

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glioblastoma Cells Break Away from Neighbors to Boost Their Lethality

Ancient Insects Thrive in South American Amber Deposit, Revealing a Vibrant Paleoecosystem

Link Between Oral Microbiome and Elevated Pancreatic Cancer Risk Uncovered

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.