• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How organs of male and female mammals differ

Bioengineer by Bioengineer
November 2, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The development of sex-specific characteristics is frequently seen in mammals. These characteristics stem from the activation of corresponding genetic programmes that until now have been largely undescribed by the scientific community. An international research team from the Center for Molecular Biology of Heidelberg University and The Francis Crick Institute in London has, for the first time, decoded the programmes that control the sex-specific development of major organs in selected mammals – humans, mice, rats, rabbits, and opossums. By comparing these programmes, the researchers were also able to trace the evolution of sex-specific organ characteristics.

Sex-specific organ characteristics

Credit: Leticia Rodríguez-Montes

The development of sex-specific characteristics is frequently seen in mammals. These characteristics stem from the activation of corresponding genetic programmes that until now have been largely undescribed by the scientific community. An international research team from the Center for Molecular Biology of Heidelberg University and The Francis Crick Institute in London has, for the first time, decoded the programmes that control the sex-specific development of major organs in selected mammals – humans, mice, rats, rabbits, and opossums. By comparing these programmes, the researchers were also able to trace the evolution of sex-specific organ characteristics.

Sexual dimorphism describes the development of secondary sex characteristics and in biology refers to the differences in the appearance of sexually mature males and females of the same species that are unrelated to the reproductive organs. Such sex-specific characteristics include clearly identifiable differences in the size and coloration of the body, or the development of different organs, such as antlers in male deer. In addition, there are less obvious differences in terms of the size, function, and cellular composition of internal organs. In humans, these differences, in the liver for example, can lead to sex-specific processing or efficacy of medications, according to Prof. Dr Henrik Kaessmann from the Center for Molecular Biology of Heidelberg University (ZMBH), who led the work together with Dr Margarida Cardoso-Moreira of The Francis Crick Institute in London.

The development of mammalian organs before and after birth is controlled by the finely tuned and complex interaction of many different genes – also known as gene expression programmes. “Overall, this development-related gene expression is fairly well understood, among other things through the work in our lab. Until now, however, what was largely unknown was how these programmes differ between female and male individuals and the effects these differences have on the function and cellular composition of organs in adult mammals,” explains Leticia Rodríguez-Montes, a doctoral candidate in Prof. Kaessmann’s “Evolution of the mammalian genome” research group.

The researchers in Heidelberg and London finally succeeded in systematically mapping the genes at the organ and cellular level that are primarily active in only one of the two sexes during development and therefore lead to the formation of different organ characteristics in female and male individuals. On the basis of sequencing data and by applying bioinformatic analysis methods, the researchers discovered a surprising pattern that applies to all the mammals they studied: “Almost all of the differences in gene expression abruptly develop only in puberty. That means that the genetic programmes responsible for the development of sex-specific organ characteristics are turned on almost exclusively late in the development of the organs, triggered by female or male hormones,” states Prof. Kaessmann.

To also understand the evolution of these gene regulatory programmes, the researchers compared their results for the various mammals in detail. “In most species we studied, the liver and kidneys exhibit numerous differences in gene expression between the sexes, which in turn lead to marked sex-specific differences in the functionality of these organs,” explains Dr Cardoso-Moreira. The researchers further learned that these differences between the sexes occur across mammals in the same organs and the same cell types in these organs; but they mostly occur through the activity of different genes.

The current findings illustrate the rapid evolution of sex-specific characteristics, which according to Leticia Rodríguez-Montes are probably due to different challenges during speciation. “One exception are the few genes found on X and Y sex chromosomes that presumably function as basic genetic triggers for the development of sex-specific characteristics in all mammals,” explains the researcher.

The results were published in the journal Science. The European Research Council funded the work. The research data are available in a public access database.



Journal

Science

DOI

10.1126/science.adf1046

Article Title

Sex-biased gene expression across mammalian organ development and evolution

Article Publication Date

2-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Rapid, Non-Invasive Method to Detect Timber Adulteration

Rapid, Non-Invasive Method to Detect Timber Adulteration

August 24, 2025
Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

August 24, 2025

Cicada Exuviae: Unique Soil Adhesion and Water Resistance

August 24, 2025

Neural Stem Cell Exosomes Alleviate MPTP-Induced Parkinson’s

August 23, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rapid, Non-Invasive Method to Detect Timber Adulteration

New AMH Cutoffs for Chinese Women with PCOS

Trait Diversity of Malvastrum in Pakistan’s Tree Plantations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.