• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How new plant cell walls change their mechanical properties after cell division

Bioengineer by Bioengineer
October 2, 2023
in Chemistry
Reading Time: 5 mins read
0
Atomic force microscopy time course on the imaged cells
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists reveal new plant cell walls can have significantly different mechanical properties compared to surrounding parental cell walls, enabling cells to change their local shape and influence the growth of plant organs.

Atomic force microscopy time course on the imaged cells

Credit: Image by Alessandra Bonfanti

Scientists reveal new plant cell walls can have significantly different mechanical properties compared to surrounding parental cell walls, enabling cells to change their local shape and influence the growth of plant organs.

This is the first time that scientists have related mechanics to cell wall “age” and was only made possible through a new method that follows the same cells over time and through successive rounds of division.

The Cambridge researchers were able to see new walls forming and then measure their mechanical properties. This pioneering work showed that new cell walls in some plants are 1.5 times stiffer than the surrounding parental cell walls – an unexpected and surprising finding.

The size and shape of plant organs like leaves and flowers is the result of complex interactions between genetics, signalling, mechanical feedback, and environmental cues. While we have made a lot of progress in understanding these processes, it is not always easy to connect what happens at the cellular scale with what happens at the organ scale.

Research undertaken on two distantly related plant species at the Sainsbury Laboratory Cambridge University (SLCU) provides new evidence suggesting local level cell division has an active role to play in controlling organ size. The interdisciplinary project was a collaboration between three SLCU research teams (Robinson Group, Schornack Group and Jönsson Group) and the SLCU Microscopy Facilities Team, bringing together expertise in experimental biomechanics, genetics, imaging and computational modelling.

Combining advanced live microscopy imaging of individual cells, advanced material characterisation methods, and mathematical modelling, Sarah Robinson’s research group has revealed the process of cell division locally alters the mechanical properties of the growing tissue, which potentially impacts on the final shape and size of the plant organ. The findings were published in Proceedings of the National Academy of Sciences (PNAS) this week (6 October 2023).

Compared to animal cells, plant cells are enclosed by a rigid box – the cell wall. Cell division involves the addition of new cell walls, which alter the mechanical stress in the cell, its geometry and the mechanical properties of the surrounding tissue.

Scientists have been able to probe the mechanical properties of individual cell walls in the outer cell layer of a plant organ, but they did not know how old each wall is and could only guess if it had just divided. First author of the paper, former researcher in the Robinson Group and now a research fellow at Politecnico di Milano, Alessandra Bonfanti followed cells over time and could see new walls forming and therefore was able to relate mechanics to cell wall “age”.

Dr Bonfanti developed a protocol that combines time-course imaging with atomic force microscopy measurements (AFM) to systematically map the age, growth and mechanical properties (stiffness) of individual cells walls and to follow the same cell walls through successive rounds of division.

“We have known for some time that the cell wall is a highly dynamic material. New material is added during cell division, while cell wall mechanical properties are modulated during growth to allow walls to undergo significant changes in shape and size without breakage,” Dr Bonfanti said. “Yet, how the mechanical properties of new cell walls transiently change in space and time was still unknown until we developed a new protocol that allowed us to measure the mechanical properties of cell walls over time”.

“We used this protocol to address how the stiffness of newly formed cell walls varies at 24-hours and 48-hours up until its mature stage, and how this affects local cell shapes”, Dr Bonfanti said. “To do so we made use of two systems: gemmae of the liverwort Marchantia polymorpha, and the early-stage first true leaf of Arabidopsis thaliana”.

The cells in the young tissues of the two plant species studied initially have a similar square-shaped geometry, which made them good models to compare.

“We first characterised the growth and cell division pattern in M. polymorpha gemmae, which was still unclear in the literature”, said Dr Bonfanti. “Then, with the optomechanical measurements, using time course imaging combined with AFM measurements, we demonstrated that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves.”

In fact, the new cell walls in M. polymorpha became 1.5 times stiffer than the parental cell walls.

“We have shown that there are significant differences in the stiffness of new cells walls compared to parental walls and that these differences contribute to the cell’s geometry and growth,” Group Leader Dr Robinson said. “This suggests cell division and its varying mechanical properties alters the rate of tissue expansion and could impact final organ size.”

Dr Robinson explained the significance of the discovery: “We already knew that cell walls loosen and become softer when cells are growing as the walls must stretch so the cells can expand as they grow. But we didn’t know what would happen when a cell divides and what properties the resulting new cell wall would have. Would they be the same or different to the walls in the surrounding tissue and how this would this impact cell growth?

“The fact that the new cell walls are much stiffer results in organ growth being restricted as it impedes the growth and influences the shape of component cells.

“The M. polymorpha cells also change their geometry and develop a 120° junction angle quicker to form cell geometries closer to hexagonal shapes, which are thought to be the most efficient shapes in terms of forming a material to cover an area. The computational modelling done in this project by Euan Smithers and Ross Carter provided evidence that the presence of a stiff new wall accelerates the formation of these 120° angles.”

“It is important to know that the new cell wall can be different to the parental wall and this gives us new questions to explore – is that always the case, in what conditions, and why is this the case?”

 

Reference

Alessandra Bonfanti, Euan Thomas Smithers, Matthieu Bourdon, Alex Guyon, Philip Carella, Ross Carter, Raymond Wightman, Sebastian Schornack, Henrik Jönsson, Sarah Robinson (2023)  Stiffness transition of new cell walls differs between Marchantia polymorpha gemmae and Arabidopsis thaliana leaves following cell division. PNAS

DOI: 10.1073/pnas.2302985120

 

Funding

This research was supported by individual Fellowships from Politecnico di Milano, Gatsby Charitable Foundation and Royal Society.

 

Open Access Resources 

All data has been uploaded on the Zenodo repository (doi: 10.5281/zenodo.7685356). All codes developed to analysed the data within the project are freely available on GitHub (https://github.com/alebonfanti/plant-cell-division-growth).



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2302985120

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Stiffness transitions in new walls post-cell division differ between Marchantia polymorpha gemmae and Arabidopsis thaliana leaves

Article Publication Date

6-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary m5C RNA Modification in Colorectal Cancer

Rising Inpatient Admissions for Youth Eating Disorders in Ireland

Intronic Element Controls Ligase IV, Directs Thymocyte Development

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.