• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How much can late Permian ecosystems tell us about modern Earth? A lot.

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Drawing by Davide Bonadonna.

A whopping two hundred and fifty-two million years ago, Earth was crawling with bizarre animals, including dinosaur cousins resembling Komodo dragons and bulky early mammal-relatives, millions of years before dinosaurs even existed. New research shows us that the Permian equator was both a literal and figurative hotspot: it was, for the most part, a scorching hot desert, on top of having a concentration of unique animals. Here, you could find ancient crocodile-sized amphibians right next to newly evolved dinosaur and croc relatives. Many of these species were wiped out after an extinction which changed life on the planet forever.

In a paper published in Earth-Science Reviews, paleontologists studied fossil sites all over the world from the late Permian to get an idea of what lived where. They found an unusual assortment of species near the equator, and one that is comparable to the modern tropics–except that the array of large, carnivorous reptiles would look very out of place anywhere on Earth today.

"The tropics act as a diversity center–stuff that has gone extinct elsewhere is still alive there, and there's new stuff evolving," explains Postdoctoral Researcher Brandon Peecook, co-author of the paper. While it makes sense that the warm, wet rainforests we see now have incredible diversity, it seems counterintuitive that these fiery, hot deserts were home to an exceptional range of species, especially because diversity at the equator fluctuates so much historically.

"The tropics were a breeding ground for biodiversity, in the distant Permian as well as today," says the study's lead author Massimo Bernardi of MUSE – Museo delle Scienze in Trento, Italy.

The foundation of the research was observations made during fieldwork in Bletterbach Valley in northern Italy, which was located near the equator in the Permian. As Evelyn Kustatscher of the Museum of Nature South Tyrol explains: "The Bletterbach is a unique place because of the array of different species present. It's not that there were more individual species present than normal, but that the species that were there were really diverse and represented very different groups in the animal kingdom."

These findings about the late Permian beg the question, "Why are we seeing so much biodiversity at the equator?" This is something scientists have yet to answer, but it shows us that biodiversity at the tropics isn't intuitive, and isn't consistent. What scientists know for sure is that regardless of desert or rainforest, climate change negatively impacts living things.

This unequaled comparison of Permian climate and species distribution to modern events shows us that while many changes are natural and we see them throughout our planet's history, drastic changes like this can be triggered by something much larger–volcanic activity likely caused this in the Permian, and human activity is the suspected culprit today. After the Permian extinction, "it was almost as though the slate had been wiped clean, and all the ecosystems had to rebuild," says Peecook. This event altered life permanently and while new animals evolved and thrived, the process of recovery took millions of years, and the animals that were lost never returned.

"If we want to know how Earth's systems work, what's expected and what's normal, we need to look to the past," and the fossil record is the best measure of ecosystem stability. As we already begin to face extinctions and carbon levels similar to those before the Permian extinction, examining these patterns over time gives us the evidence we need to measure and minimize our impact on climate, preventing further permanent damage to our planet's ecosystems and animals.

###

The study is part of the research project "The end-Permian mass extinction in the Southern and Eastern Alps" developed by the Museum of Nature South Tyrol, Bolzano, Italy, the MUSE Science Museum, Trento, Italy and the Department of Geology of the University of Innsbruck, Austria. The research was also supported by grants from the National Science Foundation: EAR-1337291, EAR-1337569, and DEB-1501097.

The scientific article is freely accessible thanks to funding for scientific publications of the Research and University Service of the Bolzano Province, Italy.

Media Contact

Sarah Lawhun
[email protected]
@FieldMuseum

http://www.fieldmuseum.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Nurses’ Competence in Dementia Care: Current Insights

November 6, 2025

Ferroptosis in Diabetes: Insights from Research

November 6, 2025

Berberine boosts CYP3A4 expression through PXR activation

November 6, 2025

Novel Rhodanine–Sulfonate Compounds Inhibit Aldose Reductase

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Competence in Dementia Care: Current Insights

Ferroptosis in Diabetes: Insights from Research

Berberine boosts CYP3A4 expression through PXR activation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.