• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How liver cancer develops

Bioengineer by Bioengineer
February 10, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: USZ

Liver cancer is the second-leading cause of cancer-related death and represents the fastest rising cancer worldwide. In most cases, the tumor develops in patients with chronic liver disease. Such diseases include chronic infections with hepatitis viruses or a so-called fatty liver due to nutritional or genetically caused lipometabolic disorders or an excessive consumption of alcohol.

An international team of researchers headed up by UZH Professor Achim Weber from the Institute of Pathology and Molecular Pathology of the University Hospital Zurich and Mathias Heikenwälder, professor at the German Cancer Research Center in Heidelberg, Germany, has discovered a major mechanism in the development of liver cancer. One of the main players in this process is enzyme caspase-8, which assumes an important dual role.

Short-term protection at the price of long-term development of cancer

This protein is therefore jointly responsible for triggering programmed cell death, apoptosis, in diseased liver cells. If the liver is permanently damaged, increased activation of cell death in hepatocytes occurs first, as the scientists demonstrated using patient samples and various mouse models. In reaction, the liver cells divide faster to regenerate the tissue. This causes lasting stress: Over a period of years, damaged liver cells die off and new ones grow in their place.

Since the hereditary material doubles at each cell division, more and more errors are constantly stealing into the DNA. The rising number of mutations leads to genetic instability and increases the probability that a liver cell will become a tumor cell. Ultimately, the chronically increased cell death activity results in the development of liver cancer. The elimination of damaged cancer cells, while sensible in itself, therefore raises the risk of tumors in the long term. "We have observed this mechanism in all the various liver diseases and examined mouse models – it appears to be remarkably universal," Weber adds.

Enzyme caspase-8 has an important dual function

In their investigation, the researchers discovered an important second function of caspase-8: In a complex with additional proteins, the enzyme detects DNA damage in the remaining liver cells and initiates their repair. This reveals another mechanism by means of which caspase-8 protects liver cells. For Achim Weber, these results are relevant not only for basic research: "Our results have important implications for the clinic – for the treatment of patients with chronic liver diseases on the one hand and for the application of cancer medications that induce cell death on the other."

###

Media Contact

Archim Weber
[email protected]
41-442-552-781
@uzh_news

http://www.uzh.ch

Related Journal Article

http://dx.doi.org/10.1016/j.ccell.2017.08.010

Share15Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.