• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How live vaccines enhance the body’s immune response

Bioengineer by Bioengineer
April 4, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Freie Universitaet Berlin, Kristina Dietert

Researchers from Charité – Universitätsmedizin Berlin, Berlin's university hospital, have discovered a new mechanism by which live vaccines induce immunity. Molecules produced exclusively by live microorganisms are recognized by specialized receptors of the immune system, subsequently triggering a protective immune response. The new findings may help improve the safety and efficacy of vaccines. Results from this study have been published in the journal Nature Immunology*.

Vaccines exploit the immune system's ability to 'memorize' encounters with previously unknown microbes. Once 'educated' in such a way by vaccination, the immune system is much more swift and effective in fighting off future infections by the same pathogen. Live attenuated vaccines have been successfully used since 1798, yet little is known about what makes them so effective and their inherent superiority over inanimate vaccines. Together with several collaborators, Prof. Leif Erik Sander and his team at Charité's Department of Infectious Diseases and Pulmonary Medicine set out to dissect the underlying mechanisms of this phenomenon.

The immune system is charged with detecting microbial invaders, which are ingested by specialized immune cells, and broken down inside specialized organelles. In contrast to inactivated (killed) vaccines, live vaccines contain metabolically active microbes, which produce a wide range of different molecules. Ribonucleic acid (RNA) is one of the molecules produced by live microorganisms, which essentially marks them as viable. During the process of digestion, the RNA of a pathogen or a live vaccine is bound by a specific type of immune receptor known as Toll-like receptor 8 (TLR8). Binding of RNA to TLR8 triggers an immunological chain reaction eventually culminating in a robust antibody response. TLR8 induced signals call into action a specialized type of immune cell known as follicular helper cells. These helper cells critically support the immune system's B cells and help them to mature into so called plasma cells, which are cellular factories for antibody production. These new findings will enable researchers to use targeted vaccine adjuvants to activate follicular helper cells and thus antibody responses. Adjuvants are often added to vaccines to increase the body's immune response, however, current adjuvant formulations are often non-specific in their action.

In their study, Prof. Sander and his team compared immune responses mounted against live and killed bacteria, using cell culture systems with human immune cells. The researchers found that live bacteria elicited slightly altered immune responses within the innate immune system. While the changes were moderate, they had striking effects on the 'adaptive' (acquired) arm of the immune response, which is responsible for the production of antibodies and for long-term protection following vaccination. Moreover, the scientists also found that patients carrying an activating TLR8 gene variant responded better to a live vaccine against tuberculosis, which resulted in improved protection against disease. These results suggest that TLR8 acts as a key switch for protective immune responses.

"Our immune system responds differently to killed and live vaccines. This is caused by the detection of RNA within live microorganisms via TLR8, which in turn triggers protective immune responses" explains Leif Erik Sander, the study's principal investigator. Given the drastic increase in the rates of antibiotic resistance both in veterinary and human medicine, new vaccines against dangerous, resistant bacteria are urgently needed. "These results may enable us to develop new vaccines that will combine the safety of modern subunit vaccines with the high efficacy of live vaccines." The researchers are currently dissecting the immune responses to the measles vaccine virus, and they are working with the Max Planck Institute of Colloids and Interfaces to develop new vaccines against pneumonia.

###

* Ugolini M, et al. Recognition of microbial viability via TLR8 drives

TFH cell differentiation and vaccine responses. Nature Immunology 2018. doi: 10.1038/s41590-018-0068-4.

Contact:

Prof. Dr. Leif Erik Sander
Department of Infectious Diseases and Pulmonary Medicine
Charité – Universitätsmedizin Berlin
Tel: +49 30 450 653 034
Email: [email protected]

Links:

– Medical Department, Division of Infectiology and Pneumonology http://infektiologie-pneumologie.de/en/

– Leif Erik Sander's Laboratory | Website http://www.charite-inflab.de/sander-lab/

– Leif Erik Sander's Laboratory | Twitter https://twitter.com/Sander_Lab

– Full text of the original article: http://rdcu.be/JnYh

Media Contact

Leif Erik Sander
[email protected]
49-304-506-53034

http://www.charite.de

Original Source

https://www.charite.de/en/service/press_reports/artikel/detail/wie_lebendimpfungen_die_immunantwort_staerken/ http://dx.doi.org/10.1038/s41590-018-0068-4

Share13Tweet8Share2ShareShareShare2

Related Posts

Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

Gymnocypris Przewalskii Juveniles Adapt to Saline-Alkaline Stress

October 9, 2025
blank

New Global Study Reveals How Introduced Animals Alter Island Plant Dispersal

October 8, 2025

Researchers Forge Innovative Paths in Immunotherapy for Cancer Treatment

October 8, 2025

Calm Red Brocket Deer Can Learn “Come” and Other Commands, While the Flightiest Struggle

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1134 shares
    Share 453 Tweet 283
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Non-Contact AI Monitors Unplanned Device Removals in Neurocritical Care

Fast, Precise Search in Petabase Sequence Data

Costly Health Care Burden of PI3Kδ Syndrome

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.