• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

How kids’ brains respond to a late night up

Bioengineer by Bioengineer
November 28, 2016
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Any parent can tell you about the consequences of their child not getting enough sleep. But there is far less known about the details of how sleep deprivation affects children's brains and what this means for early brain development.

"The process of sleep may be involved in brain 'wiring' in childhood and thus affect brain maturation," explains Salome Kurth, first author of the study published in Frontiers in Human Neuroscience, and a researcher at the University Hospital of Zurich. "This research shows an increase in sleep need in posterior brain regions in children."

This contrasts with what researchers know about the effects of sleep deprivation in adults, where the effect is typically concentrated in the frontal regions of the brain.

After staying up too late, both children and adults need a period of deep sleep to recover. This recovery phase is characterized by an increase in an electrical pattern called slow-wave activity, which can be measured with a non-invasive technique called an electroencephalogram. With a large number of electrode channels distributed across the scalp, this method also detects which brain regions show more slow-wave activity than others.

Supported by a large student team, Kurth and her colleagues, Monique LeBourgeois professor at the University of Colorado Boulder, and Sean Deoni , professor at Brown University, studied the effects of 50% sleep deprivation in a group of 13 children between the ages of 5 and 12 years. The team first measured the children's deep sleep patterns during a normal night's sleep. They then re-measured on another night after the researchers had kept the children up well past their bedtimes by reading and playing games with them.

After only getting half of a night's worth of sleep, the children showed more slow-wave activity towards the back regions of the brain–the parieto-occipital areas. This suggests that the brain circuitry in these regions may be particularly susceptible to a lack of sleep.

The team also measured how this deep sleep activity correlated with the myelin content of the brain–a cornerstone of brain development. Myelin is a fatty microstructure of the brain's white matter that allows electrical information between brain cells to travel faster. It can be measured with a specific magnetic resonance imaging technique.

"The results show that the sleep loss effect on the brain is specific to certain regions and that this correlates with the myelin content of the directly adjacent regions: the more myelin in a specific area, the more the effect appears similar to adults," says Kurth. "It is possible that this effect is temporary and only occurs during a 'sensitive period' when the brain undergoes developmental changes."

Further exploration is needed before drawing any conclusions about how insufficient sleep affects early brain developmental processes in the longer term. But for now, these results suggest that going to bed too late may have a different impact on kids' brains than on adults'.

###

The Jacobs Foundation, the Swiss National Science Foundation, the National Institute of Mental Health, and the Clinical Research Priority Program Sleep and Health of the University of Zurich funded the study.

Full research article: Kurth S, Dean DC III, Achermann P, O'Muircheartaigh J, Huber R, Deoni SCL and LeBourgeois MK (2016) Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children. Front. Hum. Neurosci. 10:456. doi: 10.3389/fnhum.2016.00456

Media Contact

Monica Favre
[email protected]
0041-215-101-704
@frontiersin

http://www.frontiersin.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Biochemistry Reveals Post-Mortem Interval Insights

Spotting Supernovae at Lightning Speed: A New Era in Cosmic Discovery

Diamonds That Detect Cancer: A Breakthrough in Medical Science

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.