• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How insulin in the brain may suppress the subjective feeling of hunger

Bioengineer by Bioengineer
June 23, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © IDM

Eating behavior and the subjective feeling of hunger are regulated by a variety of hormones. Here a key role is played by the hormone insulin because it is not only active in the body, but also in the brain. It was previously known that insulin acts on the homeostatic region (hypothalamus**). Now, however, scientists have found that the hormone is also active in other brain regions. Researchers at the Institute for Diabetes Research and Metabolic Diseases of Helmholtz Zentrum München at the University of Tübingen, a partner of the DZD, have further deciphered the function of insulin in the brain as well as its influence on the subjective feeling of hunger and have published their findings in Scientific Reports, a Nature research journal.

To better understand the mechanism of action of insulin, the researchers administered insulin intranasally to healthy young adults. Through the application of the hormone via a nasal spray, the blood-brain barrier is bypassed and the insulin reaches the brain directly. In the study, 25 lean, ten overweight and 12 obese participants "sniffed" insulin or the placebo. Brain activity was then visualized and recorded by means of a functional magnetic resonance imaging (fMRI) scan. The result in all study participants: Intranasal insulin improves functional connectivity in the prefrontal regions of the default-mode network (DMN), a group of brain regions that are activated when a person is at rest and is not performing any tasks. This region is central to cognitive processes. In addition, the functional connectivity between the DMN and the hippocampus as well as the hypothalamus is strengthened.

These changes in the brain also influence eating behavior and alter the relationship between adiposity and the hunger sensation. Actually, people with a lot of visceral adipose tissue*** have an increased sensation of hunger. "Insulin-enhanced connectivity between the DMN and the hippocampus suppresses the relationship between adipose tissue and the subjective hunger feeling," said Stephanie Kullmann, author of the study. The study participants felt less hunger after being administered intranasal insulin.

In addition, the scientists observed that insulin in the brain also improves the effect of the hormone in the body. Study participants with insulin-induced increased functional connectivity in the DMN have higher insulin sensitivity in the body. This counteracts obesity and type 2 diabetes.

The current results show that insulin in the brain — due to increased functional connectivity between cognitive and homeostatic regions — may help regulate eating behavior and facilitate weight loss.

###

Original Publication:

Stephanie Kullmann, Martin Heni, Ralf Veit, Klaus Scheffler, Jürgen Machann, Hans-Ulrich Häring, Andreas Fritsche, Hubert Preissl. Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger. Scientific Reports | 7: 1627 | DOI:10.1038/s41598-017-01907-w

*The default-mode network DMN is a group of brain regions that is active when a person is daydreaming, making future plans, etc. It enables thinking without having a stimulus.

* The hypothalamus is the supreme regulatory center for all vegetative and endocrine processes. The hypothalamus coordinates water and saline balance as well as blood pressure. It ensures the maintenance of the inner milieu (homeostasis) and regulates food intake.

*** The fatty tissue on and especially in the abdomen is called visceral fat. It is stored in the free abdominal cavity and envelops the internal organs — especially the organs of the digestive system. There is a relationship between visceral adipose tissue and the subjective feeling of hunger.

Scientific Contact:

Dr. Stephanie Kullmann
Institute for Diabetes Research and Metabolic Diseases (IDM) of Helmholtz Zentrum München at the University of Tübingen
Otfried-Müller-Straße 47
72076 Tübingen
Germany
Phone: +49 (0)7071-2987703
email: [email protected]

Media Contact

Birgit Niesing
[email protected]
49-089-318-73971
@diabresearch

http://www.dzd-ev.de

Original Source

https://www.dzd-ev.de/en/latest/news/news/article/40582/index.html http://dx.doi.org/10.1038/s41598-017-01907-w

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sex Differences in Energy Demand in Alzheimer’s Model

October 19, 2025
blank

Sex Differences in Anxiety and Depression Modulation

October 19, 2025

Ovarian Hormones Curb Fear Relapse via Dopamine Pathway

October 18, 2025

RNA Sequencing Uncovers Bovine Embryo Activation Regulators

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1262 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    290 shares
    Share 116 Tweet 73
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    124 shares
    Share 50 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Enhances Non-Invasive Sleep Stage Detection

Sex Differences in Energy Demand in Alzheimer’s Model

Antibody-Drug Conjugates Enhance Outcomes in Advanced Triple-Negative Breast Cancer Patients Unsuitable for Immune Checkpoint Inhibitors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.