• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How insects track odors by navigating microscale winds

Bioengineer by Bioengineer
May 30, 2023
in Chemistry
Reading Time: 3 mins read
0
The standard deviation in wind direction generally increases for larger time windows and is a function of wind speed and environment, so the researchers computed the standard deviation in wind direction over varying time windows for all points throughout
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, May 30, 2023 — How do flying insects like important pollinators locate odor sources in the great outdoors, despite encountering highly variable wind conditions? They use odor plumes — which travel like smoke and form when the wind blows odor molecules from their source — to track down sources such as flowers or pheromones.

The standard deviation in wind direction generally increases for larger time windows and is a function of wind speed and environment, so the researchers computed the standard deviation in wind direction over varying time windows for all points throughout

Credit: Credit: Jaleesa Houle and Floris Van Breugel

WASHINGTON, May 30, 2023 — How do flying insects like important pollinators locate odor sources in the great outdoors, despite encountering highly variable wind conditions? They use odor plumes — which travel like smoke and form when the wind blows odor molecules from their source — to track down sources such as flowers or pheromones.

But wind tunnels are typically unable to replicate realistic outdoor wind conditions. In Physics of Fluids, by AIP Publishing, University of Nevada at Reno researchers decided to explore microscale wind conditions in various outdoor environments to better understand what flying insects might experience while tracking odor plumes.

Authors Jaleesa Houle and Floris Van Breugel assessed the mechanical turbulence produced by ambient wind flowing over surface roughness elements such as buildings, trees, and fences and its role in odor plume tracking.

“Since we’re studying wind dynamics within the surface roughness sublayer, most known atmospheric similarity theories that describe properties of the wind profile are not applicable,” said Houle. “So, we use statistical analysis to find both spatial and temporally significant correlations between wind measurements for various sites where we collected data.”

They collected near-surface wind data from several sage steppe (shrub-filled grassland), forest, and urban areas in Northern Nevada and discovered near-surface wind direction is often highly variable over timescales of less than 10 minutes. They also found wind direction variability to be consistently higher in environments with greater surface complexity (urban areas) and lower at higher wind speeds.

“This is important because insects are typically tracking odor plumes in lower wind speeds, which indicates they are somehow making sense of the high directional variability they encounter,” said Houle. “Turbulence intensity is strongly correlated with standard deviations in wind direction, which might be useful for future wind tunnel experimental designs aimed at recreating more ‘natural’ winds.”

Based on their findings, Houle and van Breugel hypothesize an optimal range of wind speed and environmental surface complexity may exist to help insects locate an odor source.

“Further experiments will be needed to test our hypothesis and may help us better understand the implications of land fragmentation on the success of ecologically significant plume tracking insects, such as pollinators,” said Houle. “Beyond this, our results give a compelling reason for researchers to focus on increasing directional variability in wind tunnel studies if they want to uncover plume tracking behaviors that more closely resemble what we might see in nature.”

Next, the researchers will apply their findings to plume tracking wind tunnel experiments and a series of outdoor studies.

“During the summer, we plan to test our hypothesis regarding the types of wind conditions insects might prefer while tracking odor plumes,” said Houle. “In the lab, we’re actively looking for ways to create greater directional variability to better mimic natural wind.”

###

The article, “Near-surface wind variability over spatiotemporal scales relevant to plume tracking insects,” is authored by Jaleesa Houle and Floris Van Breugel. It will appear in Physics of Fluids on May 30, 2023 (DOI: 10.1063/5.0147945). After that date, it can be accessed at https://doi.org/10.1063/5.0147945.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.



Journal

Physics of Fluids

DOI

10.1063/5.0147945

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Near-surface wind variability over spatiotemporal scales relevant to plume tracking insects

Article Publication Date

30-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Standardized Extract Boosts Immunity in Chemotherapy Mice

Reticulocalbin-1: Biomarker and Therapy Target in RCC

Ag-Doped MnO2 Sea Urchin Structure Boosts Zinc Batteries

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.