• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How insects track odors by navigating microscale winds

Bioengineer by Bioengineer
May 30, 2023
in Chemistry
Reading Time: 3 mins read
0
The standard deviation in wind direction generally increases for larger time windows and is a function of wind speed and environment, so the researchers computed the standard deviation in wind direction over varying time windows for all points throughout
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, May 30, 2023 — How do flying insects like important pollinators locate odor sources in the great outdoors, despite encountering highly variable wind conditions? They use odor plumes — which travel like smoke and form when the wind blows odor molecules from their source — to track down sources such as flowers or pheromones.

The standard deviation in wind direction generally increases for larger time windows and is a function of wind speed and environment, so the researchers computed the standard deviation in wind direction over varying time windows for all points throughout

Credit: Credit: Jaleesa Houle and Floris Van Breugel

WASHINGTON, May 30, 2023 — How do flying insects like important pollinators locate odor sources in the great outdoors, despite encountering highly variable wind conditions? They use odor plumes — which travel like smoke and form when the wind blows odor molecules from their source — to track down sources such as flowers or pheromones.

But wind tunnels are typically unable to replicate realistic outdoor wind conditions. In Physics of Fluids, by AIP Publishing, University of Nevada at Reno researchers decided to explore microscale wind conditions in various outdoor environments to better understand what flying insects might experience while tracking odor plumes.

Authors Jaleesa Houle and Floris Van Breugel assessed the mechanical turbulence produced by ambient wind flowing over surface roughness elements such as buildings, trees, and fences and its role in odor plume tracking.

“Since we’re studying wind dynamics within the surface roughness sublayer, most known atmospheric similarity theories that describe properties of the wind profile are not applicable,” said Houle. “So, we use statistical analysis to find both spatial and temporally significant correlations between wind measurements for various sites where we collected data.”

They collected near-surface wind data from several sage steppe (shrub-filled grassland), forest, and urban areas in Northern Nevada and discovered near-surface wind direction is often highly variable over timescales of less than 10 minutes. They also found wind direction variability to be consistently higher in environments with greater surface complexity (urban areas) and lower at higher wind speeds.

“This is important because insects are typically tracking odor plumes in lower wind speeds, which indicates they are somehow making sense of the high directional variability they encounter,” said Houle. “Turbulence intensity is strongly correlated with standard deviations in wind direction, which might be useful for future wind tunnel experimental designs aimed at recreating more ‘natural’ winds.”

Based on their findings, Houle and van Breugel hypothesize an optimal range of wind speed and environmental surface complexity may exist to help insects locate an odor source.

“Further experiments will be needed to test our hypothesis and may help us better understand the implications of land fragmentation on the success of ecologically significant plume tracking insects, such as pollinators,” said Houle. “Beyond this, our results give a compelling reason for researchers to focus on increasing directional variability in wind tunnel studies if they want to uncover plume tracking behaviors that more closely resemble what we might see in nature.”

Next, the researchers will apply their findings to plume tracking wind tunnel experiments and a series of outdoor studies.

“During the summer, we plan to test our hypothesis regarding the types of wind conditions insects might prefer while tracking odor plumes,” said Houle. “In the lab, we’re actively looking for ways to create greater directional variability to better mimic natural wind.”

###

The article, “Near-surface wind variability over spatiotemporal scales relevant to plume tracking insects,” is authored by Jaleesa Houle and Floris Van Breugel. It will appear in Physics of Fluids on May 30, 2023 (DOI: 10.1063/5.0147945). After that date, it can be accessed at https://doi.org/10.1063/5.0147945.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.



Journal

Physics of Fluids

DOI

10.1063/5.0147945

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Near-surface wind variability over spatiotemporal scales relevant to plume tracking insects

Article Publication Date

30-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carbon Fiber Boosts Zirconium Diboride in 3D Printing

Revolutionary Support Program for Families of Cancer Patients

Spatial Multiomics Uncovers Immune Dysfunction in Parkinson’s, IBD

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.