• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How Gata4 helps mend a broken heart

Bioengineer by Bioengineer
August 14, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Baylor College of Medicine

During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts that do not help the heart pump. The heart weakens; most people who had a severe heart attack will develop heart failure, which remains the leading cause of mortality from heart disease.

"Our most important goal is to treat post-heart attack cardiac failure," said Dr. Megumi Mathison, associate professor of surgery at Baylor College of Medicine. "Our approach is to restore cardiac function by reprogramming scar tissue into cardiomyocytes."

In the Laboratory for Cardiac Regeneration, led by Dr. Todd K. Rosengart, professor and chair of surgery and professor of molecular and cellular biology at Baylor, a team of researchers has shown that administration of a cocktail made of transcription factors Gata4, Mef2c and Tbx5 (GMT) results in less scar tissue, or fibrosis, and up to a 50 percent increase in cardiac function in small animal models of the disease.

This result was presumed to be mostly a consequence of the reprograming of heart fibroblasts into cardiomyocyte-like cells. Interestingly, the Rosengart team noticed that reduced fibrosis and improved cardiac function far exceeded the extent of induced new cardiomyocyte-like cells. "This observation suggested the existence of unexplored and non-optimized underlying mechanisms," Rosengart said.

A novel role for Gata4

"We and others had described that, in addition to inducing reprograming of fibroblasts into cardiomyocyte-like cells, the GMT cocktail also induced reduction of post-heart attack fibrosis," Mathison said. "However, not much attention had been paid to the latter."

The research team investigated in more detail how the GMT cocktail activated mechanisms that reduced fibrosis. They found the first evidence that, of the three components in the GMT cocktail, only Gata4 was able to reduce post-heart attack fibrosis and improve cardiac function in a rat model of heart attack.

Further exploration of the molecular mechanism mediating this novel effect showed that administering Gata4 to rat fibroblasts in the lab resulted in reduced expression of Snail, the master gene of fibrosis.

"Gata4 plays a complex role in heart regeneration: as part of the GMT cocktail, it contributes to the reprograming of fibroblasts into cardiomyocyte-like cells; we know it contributes to heart hypertrophy – the development of an enlarged heart – and now we discovered that it alone can decrease cardiac fibrosis," Mathison said. "Others have reported that Gata4 also can suppress liver fibrosis. There is still a lot to be done before we can transfer these discoveries to the bedside, but they are important first steps."

###

Rosengart also is professor of heart and vascular disease at the Texas Heart Institute.

Read all the details of this study in the Journal of Thoracic and Cardiovascular Surgery.

Other contributors to this work include Vivek P. Singh, Deepthi Sanagasetti, Lina Yang, Jaya Pratap Pinnamaneni and Jianchang Yang, all at Baylor College of Medicine.

Financial support was provided by the National Institutes of Health R01.

Media Contact

Graciela Gutierrez
[email protected]
713-798-4710
@bcmhouston

https://www.bcm.edu/news

Original Source

https://fromthelabs.bcm.edu/2017/08/14/how-gata4-helps-mend-a-broken-heart/ http://dx.doi.org/10.1016/j.jtcvs.2017.06.035

Share13Tweet7Share2ShareShareShare1

Related Posts

blank

Exploring Prophages in Enterococcus faecium: Diversity & Resistance

October 29, 2025
“‘Broken’ Genes Key to Marsupial Fur Color Variation”

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

October 28, 2025

Gymnema sylvestre’s Antifungal Compounds and Optimization

October 28, 2025

Sorghum Polyamine Oxidase Genes: Drought Resilience Insights

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

STXBP6 Controls Ovarian Cancer via PI3K/AKT Pathway

Understanding Countertransference in Eating Disorder Therapy

Assessing Turkish Regret Intensity Scale’s Validity and Reliability

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.