• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

How environmental pollutants and genetics work together in rheumatoid arthritis

Bioengineer by Bioengineer
April 19, 2018
in Health
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR, Mich. – It has been known for more than three decades that individuals with a particular version of a gene — human leukocyte antigen (HLA) — have an increased risk for rheumatoid arthritis.

Meanwhile, in recent years, there has been a growing interest in the relationship between rheumatoid arthritis and environmental factors, such as cigarette smoking. In smokers who develop rheumatoid arthritis, the disease hits harder. Smokers who also carry the HLA gene variant have even higher likelihood to develop RA, and their disease is more severe. For these patients, this means not only greater pain and swelling, but also more severe bone destruction — a lesser known and more dangerous aspect of the disease.

In a new mouse study, Michigan Medicine researchers probed the relationship between these two factors: the HLA gene and environmental pollutants.

"We found a particular enzyme that acts as a channel, or pathway, in the cell for a conversation between the two culprits, so they work together to do greater damage. Individually they are bad, but together, they're worse," says Joseph Holoshitz, M.D., professor of internal medicine and associate chief for research in the Division of Rheumatology at the University of Michigan School of Medicine.

The work is published in the Proceedings of the National Academy of Sciences.

Factors at work

Cigarettes are one of the top environmental concerns with rheumatoid arthritis. But many other environmental pollutants can also help trigger the condition. For example, living in urban areas or near highways is linked with RA, regardless of cigarette use.

The chemical dioxin may be to blame. It's the same contaminant that was found in soil near a Dow Chemical plant in Midland, Michigan. "One scenario is that air pollution from vehicles on highways produces dioxin or other pollutants. Dioxin is just one of many chemicals that similarly activate this pathway," says Holoshitz.

Dioxin also has been shown to increase severity in an experimental model of another autoimmune disease, multiple sclerosis.

"We've shown in this study that the interaction between dioxin and the HLA gene variant activates events known to be associated with rheumatoid arthritis. And we've demonstrated quite convincingly that this facilitates bone destruction," says Holoshitz.

Bone degeneration in rheumatoid arthritis is caused by hyperactivity of certain bone cells called osteoclasts, which absorb bone tissue. "In our research with the combination of dioxin and the HLA gene variant, we saw that osteoclasts are overactive and overabundant, and that bone is destroyed because of it," says Holoshitz.

Currently, the treatments available for rheumatoid arthritis focus primarily on the inflammation but do not directly target bone destruction, says Holoshitz. "Once we have better drugs that directly and specifically address bone destruction in this disease, we'll have better treatment."

Says Holoshitz: "As a separate project, we have a couple of early-stage drug candidates that block the HLA gene-activated pathway and are effective in preventing bone damage. These drugs almost completely inhibit experimental rheumatoid arthritis and bone damage in mice.

"By understanding the mechanisms, we may be able to develop better inhibitors to prevent disease and identify therapeutic targets for new treatment strategies," says Holoshitz.

###

Media Contact

Kylie Urban
[email protected]
734-764-2220
@umichmedicine

http://www.med.umich.edu

https://labblog.uofmhealth.org/lab-report/how-environmental-pollutants-and-genetics-work-together-rheumatoid-arthritis

Related Journal Article

http://dx.doi.org/10.1073/pnas.1722124115

Share12Tweet7Share2ShareShareShare1

Related Posts

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

September 12, 2025

Choosing Wisely: A Challenge in Clinical Reasoning

September 12, 2025

Improved Detection of FMR1 CGG Repeats via Novel Assay

September 12, 2025

Nanomedicine: A New Frontier in Targeting Metastasis

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

Evaluating Energy Digestibility in Quail Feed Ingredients

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.