• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How do metals interact with DNA?

Bioengineer by Bioengineer
March 22, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Copyright: Juan J. Nogueira, University of Vienna

To fight cancer, every year thousands of chemical substances are screened for their potential effects on tumor cells. Once a compound able to inhibit cancer cell growth is found, it still takes several years of research until the drug gets approved and can be applied to patients. The elucidation of the different pathways that a drug takes within human cells, in order to predict possible adverse effects, usually requires elaborate and time-consuming experiments.

The teams of Leticia González from the Faculty of Chemistry of the University of Vienna and Jacinto Sá from Uppsala University have developed a protocol that is able to detect with high precision how, where, and why a drug interacts with the biomolecules of an organism. "In a first step, using high-energy X-ray radiation from the Swiss Light Source third-generation-synchrotron, the favorite binding location of the drug inside the cell is determined", González explains. In a second step, advanced theoretical simulations, partially done on the supercomputer "Vienna Scientific Cluster", rationalize the preference of the potential medicament for that particular location.

The scientists have applied this protocol to the drug Pt103, which is known to have cytotoxic properties but an unknown mechanism of action. The compound Pt103, which belongs to the family of the so-called platinum-based drugs, showed promising antitumor activity in previous studies. Until recently, scientists could only speculate on the action of the compound with the DNA found inside a human or cancer cell. "We could show that the drug binds to a specific site of DNA, which was not expected based on previous research. And we could also explain why the drug attacks this particular site." says Juan J. Nogueira, a postdoctoral researcher in the group of González and co-author of the study. Using this newly gained knowledge one can better understand the functionality of the corresponding chemotherapeutic agent, which might lead to the development of new and more efficient drugs.

###

Publication in Journal of Physical Chemistry Letters

"Direct Determination of Metal Complexes Interaction with DNA by Atomic Telemetry and Multiscale Molecular Dynamics." Joanna Czapla-Masztafiak, Juan J. Nogueira, Ewelina Lipiec, Wojciech M. Kwiatek, Bayden R. Wood, Glen B. Deacon, Yves Kayser, Daniel L. A. Fernandes, Mariia V. Pavliuk, Jakub Szlachetko, Leticia González, and Jacinto Sá

The Journal of Physical Chemistry Letters 2017, 8, 805-811.

DOI: 10.1021/acs.jpclett.7b00070

Media Contact

Leticia González
[email protected]
43-142-775-2750
@univienna

http://www.univie.ac.at/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Continuous Glucose Monitoring: Revolutionizing Type 2 Diabetes Care

December 19, 2025
BBX Gene Family Boosts Anthocyanin in Eggplant

BBX Gene Family Boosts Anthocyanin in Eggplant

December 19, 2025

Radiotherapy Plus Anti-PD-1 Boosts Liver Cancer Ferroptosis

December 19, 2025

Peptidyl-tRNA Hydrolase 2 Suppresses Peripartum Heart Failure

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Continuous Glucose Monitoring: Revolutionizing Type 2 Diabetes Care

BBX Gene Family Boosts Anthocyanin in Eggplant

Radiotherapy Plus Anti-PD-1 Boosts Liver Cancer Ferroptosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.