• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How do giraffes and elephants alter the African Savanna landscape?

Bioengineer by Bioengineer
September 14, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Duncan Kimuyu

As they roam around the African savanna in search for food, giraffes and elephants alter the diversity and richness of its vegetation. By studying the foraging patterns of these megaherbivores across different terrains in a savanna in Kenya, scientists from the Smithsonian Tropical Research Institute (STRI) and collaborating institutions discovered that these large mammals prefer to eat their meals on flat ground, potentially impacting the growth and survival of plant species on even savanna landscapes, such as valleys and plateaus.

Megaherbivores are more concerned about eating as much food as possible while expending the minimum amount of effort, than about avoiding potential predators. Elephants may consume as much as 600 pounds of vegetation in a day; giraffes, about 75. This drove scientists to wonder about the impact of these megaherbivores on vegetation across a range of landscapes in the savanna.

“Previous studies have demonstrated that megaherbivores adjust their movement patterns to avoid costly mountaineering,” said co-author David Kenfack, STRI staff scientist, coordinator of the ForestGEO network forest monitoring plots in Africa and recently elected Fellow of the African Academy of Sciences. “We wanted to know the extent to which fine-scale variations in topography may influence browsing damage by these charismatic megaherbivores and evaluate whether seasonal shortages in food availability would force the megaherbivores to venture into areas with rugged terrain.”

Their observations conducted within a 120-hectare Smithsonian ForestGEO long-term vegetation monitoring plot located at Mpala Research Center in Kenya confirmed that giraffes and elephants prefer flat ground while foraging. They compared the damage on Acacia mellifera trees, which grow all over the savanna landscape and are a common meal for megaherbivores. They found that the trees growing on steep slopes were taller and had fewer stems than those in valleys and plateaus, suggesting that elephant and giraffes tend to avoid feeding in these less accessible habitats.

This behavior did not change during the dry season, when resources become scarce, indicating that these two species would rather disperse to new areas with more favorable conditions than climb up a nearby slope to feed.

For the authors, these feeding patterns may help preserve steep slopes as habitat refugia, with a greater diversity and density of vegetation than more frequently visited areas. Their findings support this argument: the number and variety of trees encountered on the steep slopes was higher than in the valleys and plateaus.

“This study has broadened our understanding of the role of topography in explaining diversity patterns of plants,” said Duncan Kimuyu, a Smithsonian Mpala postdoctoral fellow, lecturer at Karatina University in Kenya and main author of the study. “Further research is warranted to understand how other factors such as differences in soil properties may interact with topography and megaherbivores to influence the growth and survival of vegetation in the African savanna.”

###

Members of the research team are affiliated with STRI, Karatina University, Mpala Research Center and Wildlife Foundation and the National Museums of Kenya. Research was funded by the Smithsonian Tropical Research Institute, ForestGEO and the International Foundation for Science (D/5455-2).

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical biodiversity and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems.

Media Contact
Leila Nilipour
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/btp.12848

Tags: BiodiversityBiologyEcology/EnvironmentForestryGeology/SoilPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025
Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025

European Cisco: Genetic Adaptations Linked to Salinity Changes and Spawning Timing

September 22, 2025

Engineered Gut Bacteria Enhance Survival Rates in Colorectal Cancer Patients

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

Titanium-Doped α-Ni(OH)2: Boosting NiMH Battery Performance

New Study Reveals Continuous Support Crucial for Sustaining Weight Loss Post-Dieting

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.