• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How do animals know it’s lunchtime?

Bioengineer by Bioengineer
October 28, 2023
in Biology
Reading Time: 3 mins read
0
Molecular mechanisms behind regular feeding cycles in fruit flies.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have used fruit flies to study how daily eating patterns are regulated. They found that the quasimodo (qsm) gene helped sync feeding to light/dark cycles, but not in constant darkness: instead, the genes clock (clk) and cycle (cyc) keep eating/fasting cycles, while other “clocks” in nerve cells help sync it to days. Deciphering the molecular mechanism behind eating cycles helps us understand animal behavior, including our own.

Molecular mechanisms behind regular feeding cycles in fruit flies.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have used fruit flies to study how daily eating patterns are regulated. They found that the quasimodo (qsm) gene helped sync feeding to light/dark cycles, but not in constant darkness: instead, the genes clock (clk) and cycle (cyc) keep eating/fasting cycles, while other “clocks” in nerve cells help sync it to days. Deciphering the molecular mechanism behind eating cycles helps us understand animal behavior, including our own.

Many members of the animal kingdom eat at roughly the same times each day. This is born out of the need to adapt to aspects of the environment, including how much light there is, temperature, the availability of food, the chance that predators are around, all of which are vital for survival. It is also important for efficient digestion and metabolism, thus for our general wellbeing.

But how do such a wide range of organisms know when to eat? An important factor is circadian rhythm, an approximately daily physiological cycle shared by organisms as diverse as animals, plants, bacteria and algae. It serves as a “master clock” which regulates rhythmic behavior. But animals are full of other timing mechanisms, known as “peripheral clocks,” each with its own different biochemical pathways. These can be reset by external factors, such as feeding. But the specific way in which these clocks govern animal feeding behavior is not yet clear.

Now a team led by Associate Professor Kanae Ando of Tokyo Metropolitan University have addressed this problem using fruit flies, a model organism that mirrors many of the features of more complex animals, including humans. They used a method known as a CAFE assay, where flies are fed through a microcapillary to measure exactly how much individual flies eat at different times. Firstly, they looked at how flies synced their eating habits to light. Studying flies feeding in a light/dark cycle, previous work already showed that flies feed more during the daytime even when mutations were introduced to core circadian clock genes, period (per) and timeless (tim). Instead, the team looked at quasimodo (qsm), a gene that encodes for a light-responsive protein that controls the firing of clock neurons. By knocking down qsm, they found that flies had their daytime feeding pattern significantly affected. For the first time, we know that the syncing of feeding to a light-mediated rhythm is affected by qsm.

This was not the case for flies feeding in constant darkness. Flies with mutations in their core circadian clock genes suffered severe disruption to their daily feeding patterns. Of the four genes involved, period (per), timeless (tim), cycle (cyc) and clock (clk), loss of cyc and clk was far more severe. In fact, it was found that clk/cyc was necessary in creating bimodal feeding patterns i.e. eating and fasting periods, particularly those in metabolic tissues. But how did these cycles sync up with days? Instead of metabolic tissues, molecular clock genes in the nerve cells played the dominant role.

The team’s discoveries give us a first glimpse into how different clocks in different parts of an organism regulate feeding/fasting cycles as well as how they match up with diurnal rhythms. An understanding of the mechanisms behind feeding habits promises new insights into animal behavior, as well as novel treatments for eating disorders.

This work was supported by the Farber Institute for Neurosciences and Thomas Jefferson University, the National Institutes of Health [R01AG032279-A1], a Takeda Foundation Grant, and the TMU Strategic Research Fund.



Journal

iScience

DOI

10.1016/j.isci.2023.108164

Article Title

Dissecting the daily feeding pattern: Peripheral CLOCK/CYCLE generate the feeding/fasting episodes and neuronal molecular clocks synchronize them

Article Publication Date

7-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Splicing Patterns in Medicinal Rheum Palmatum

October 5, 2025
NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ICU Nurses’ Perspectives on End-of-Life Care

Exploring Splicing Patterns in Medicinal Rheum Palmatum

Exchange Transfusion Impact on Severe Infant Pertussis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.