• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How did vertebrates first evolve jaws?

Bioengineer by Bioengineer
June 28, 2022
in Biology
Reading Time: 4 mins read
0
Zebrafish 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Five-hundred million years ago, it was relatively safe to go back in the water. That’s because creatures of the deep had not yet evolved jaws. In a new pair of studies in eLife and Development, scientists reveal clues about the origin of this thrilling evolutionary innovation in vertebrates.

Zebrafish 1

Credit: Image by Mathi Thiruppathy/Crump Lab

Five-hundred million years ago, it was relatively safe to go back in the water. That’s because creatures of the deep had not yet evolved jaws. In a new pair of studies in eLife and Development, scientists reveal clues about the origin of this thrilling evolutionary innovation in vertebrates.

In the studies, Mathi Thiruppathy from Gage Crump’s laboratory at USC, and collaborator J. Andrew Gillis from the University of Cambridge and the Marine Biological Laboratory, looked to embryonic development as way to gain insight into evolution—an approach known as “evo-devo.”

In fishes, jaws share a common developmental origin with gills. During development, jaws and gills both arise from embryonic structures called “pharyngeal arches.” The first of these arches is called the mandibular arch because it gives rise to jaws, while additional arches develop into gills. There are also anatomical similarities: the gills are supported by upper and lower bones, which could be thought of as analogous to the upper and lower jaws.

“These developmental and anatomical observations led to the theory that the jaw evolved by modification of an ancestral gill,” said Thiruppathy, who is the eLife study’s first author and a PhD student in the Crump Lab. “While this theory has been around since the late 1800s, it remains controversial to this day.”

In the absence of clear fossil evidence, the eLife publication presents “living” evidence in support of the theory that jaws originated from gills. Nearly all fishes possess a tiny anatomical structure called a “pseudobranch,” which resembles a vestigial gill. However, this structure’s embryonic origin was uncertain. 

Using elegant imaging and cell tracing techniques in zebrafish, Thiruppathy and her colleagues conclusively showed that the pseudobranch originates from the same mandibular arch that gives rise to the jaw. The scientists then showed that many of the same genes and regulatory mechanisms drive the development of both the pseudobranch and the gills.

In a related study just published in Development, Gillis and his Cambridge colleague Christine Hirschberger show that skates also have a mandibular arch-derived pseudobranch with genetic and developmental similarities to a gill. While zebrafish are bony fish, skates represent an entirely different evolutionary class of jawed vertebrates: cartilaginous fish.

“Our studies show that the mandibular arch contains the basic machinery to make a gill-like structure,” said Crump, the eLife study’s corresponding author, and a professor of stem cell biology and regenerative medicine at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at the Keck School of Medicine of USC. “This implies that the structures arising from the mandibular arch—the pseudobranch and the jaw—might have started out as gills that were modified over the course of deep evolutionary time.”

Gillis, who is the corresponding author of the Development study and a co-author on the eLife study, added: “Together, these two studies point to a pseudobranch being present in the last common ancestor of all jawed vertebrates. These studies provide tantalizing new evidence for the classic theory that a gill-like structure evolved into the vertebrate jaw.”

Peter Fabian, a postdoctoral trainee in the Crump Lab at USC, is also a co-author on the eLife study.

Ninety-seven percent of the support for the eLife study came from federal funding from the National Institute of Dental and Craniofacial Research (grants R35DE027550, F31DE030706, and K99DE029858). The remaining funding came from the Royal Society (RGF/EA/180087) and the University of Cambridge (14.23z). 

The Development study was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society, and the Isaac Newton Trust.

About Keck School of Medicine of USC

Founded in 1885, the Keck School of Medicine of USC is one of the nation’s leading medical institutions, known for innovative patient care, scientific discovery, education and community service. Medical and graduate students work closely with world-renowned faculty and receive hands-on training in one of the nation’s most diverse communities. They participate in cutting-edge research as they develop into tomorrow’s health leaders. The Keck School faculty are key participants in training of 1200 resident physicians across 70 specialty and subspecialty programs, thus playing a major role in the education of physicians practicing in Southern California.



Journal

eLife

DOI

10.7554/eLife.78170

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Gill developmental program in the teleost mandibular arch

Article Publication Date

28-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025
“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Insights on Implementing Patient-Reported Outcomes

Exploring NK Cell Therapies for Solid Tumors

Acupuncture Use for Low Back Pain in China

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.