• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How cells protect themselves against mechanical stress

Bioengineer by Bioengineer
March 15, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A light breeze, a gentle stroke – the human skin can sense the slightest touch. A key player in this process is an ion channel in the skin's inner cell membranes that was only discovered seven years ago: Piezo2 responds to mechanical stimuli by opening when the cell membrane surrounding it expands. Opening the channel excites the sensory cell to send signals to the brain.

Piezo1 opens in the same way as PIEZO2, but is involved in the formation of blood vessels rather than the sense of touch. New vessels are only created when a blood flow is registered in the body, and Piezo1 is the sensor that registers the flow of blood. This channel is therefore vital for humans and other mammals. Mice that are missing Piezo1 after deletion of the gene die either before or shortly after birth.

Most Piezo channels are closed

Until now, the assumption was that Piezo1 and Piezo2 reacted solely to mechanical stimuli – perhaps because of the unique structure of the two ion channels, which is fundamentally different to that of classical voltage-gated channels. However, a research team led by Gary Lewin of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) in Berlin has now discovered that Piezo channels are in fact highly sensitive to changes in membrane voltage.

Cells probably use this ability to protect themselves from mechanical overstimulation, as reported in an article published in the journal Nature Communications initiated and carried out by Dr. Mirko Moroni, the lead author, and other members of Lewin's research group. The research was funded by the Alexander von Humboldt Foundation and the German Research Foundation (DFG).

Even flies and fish have the protective mechanism

"When the membrane voltage is normal, which in most cells is ?60 mV, around 95 percent of all the Piezo channels are closed and remain closed even when exposed to mechanical stimuli," explains Lewin. "More channels are activated only when the voltage changes and the membrane becomes depolarized." The researcher explains that this appears to be a very old evolutionary property, and one that plays an extremely important role.

Given that voltage-dependent Piezo channels have also been discovered in fruit flies and zebrafish, the scientists have concluded that this newly discovered protection mechanism has probably existed for many millions of years. In fact, the mechanism is even more pronounced in both these species than it is in evolutionarily younger species like mice and humans.

A mutation in Piezo1 damages red blood cells

This importance of voltage regulation is not only demonstrated by the fact that it has clearly existed for well over 100 million years, but Moroni also discovered a mutation in the Piezo1 channels of human blood cells that alters the voltage dependence of these ion channels, making them far more sensitive to changes in the membrane potential and thus more sensitive to mechanical stimuli.

"People with this genetic mutation suffer from a disease called hereditary xerocytosis," says Lewin. This is a congenital red blood cell abnormality that leads to anemia in affected patients. German speed skater Claudia Pechstein actually suffers from a mild form of this disease, which is why she was found to have too many immature red blood cells in her body in 2014 and was suspected of doping.

The mechanism was actually discovered by chance

"The fact that people get sick as a result of a change in the voltage dependence of Piezo channels demonstrates the importance of this mechanism – which remained unnoticed for so long and was first discovered almost by chance by Dr Mirko Moroni," says Lewin. The mechanism seems to protect blood cells from the mechanical stress they would otherwise be permanently exposed to as they travel through narrow blood vessels. As a next step, Lewin and his colleagues want to find out whether altering the voltage dependency of Piezo2 has any impact on the skin's sense of touch.

###

Media Contact

Gary Lewin
[email protected]

http://www.mdc-berlin.de

https://www.mdc-berlin.de/news/press/how-cells-protect-themselves-against-mechanical-stress

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-03502-7

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

LMNB2 Modulates p38 MAPK to Influence Esophageal Cancer

November 16, 2025
Tracing Canine Hemoplasma in Türkiye: Molecular Insights

Tracing Canine Hemoplasma in Türkiye: Molecular Insights

November 15, 2025

Head Lice in Pakistan Reveal Regional and Global Diversity

November 15, 2025

Calsequestrin-2 Mutation Triggers Eye Defects in Zebrafish

November 15, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Social Factors on Prediabetes Mortality

Myocardium Suppression After Remdesivir in Congenital Heart Patients

WNT5A Boost in PCOS Alters Granulosa Cell Dynamics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.