• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How cells control mitochondria

Bioengineer by Bioengineer
July 19, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pablo Sánchez-Martín/University of Freiburg

Errors in the metabolic processes of mitochondria are responsible for a variety of diseases such as Parkinson’s and Alzheimer’s. Scientists needed to find out just how the necessary building blocks are imported into the complex biochemical apparatus of these cell areas. The TOM complex (translocase of the outer mitochondrial membrane) is considered the gateway to the mitochondrion, the proverbial powerhouse of the cell. The working group headed by Professor Chris Meisinger at the Institute of Biochemistry and Molecular Biology at the University of Freiburg has now demonstrated – in human cells – how signaling molecules control this gate. A signaling protein called DYRK1A modifies the molecular machinery of TOM and makes it more permeable for enzymes that are important for the cell metabolism. The group has thus discovered the first signaling protein that directly influences this import process in humans. Their work has been published in the journal Nature Communications.

Developmental disorders in a new light

In neurodevelopmental disorders such as autism, microcephaly and Down’s syndrome, DYRK1A is defective. “The connection with mitochondria is new. These results allow us to better understand these disorders and develop treatment strategies,” says Dr. Adinarayana Marada, a member of Meisinger’s team.

“For a long time, researchers thought that the TOM complex was a rigid structure in the mitochondrial membrane whose doors were always open,” Meisinger explains. His team recently demonstrated signaling mechanisms in baker’s yeast that alter the subunits of the TOM complex depending on the metabolic state of the cell, or in response to sudden stress. In this way, the cell can specifically control the influx of precursor proteins for building elements of the metabolism, and it can adapt the function of the mitochondria to an altered cellular state. Whether such mechanisms also exist in humans was previously unknown.

DYRK1A acts upon the TOM complex

The first authors of the study, Dr. Corvin Walter and Dr. Adinarayana Marada of Meisinger’s research group, developed a systematic approach to track down signaling mechanisms such as those triggered by protein kinases, in humans. Over several years, they tested candidates using cell biological and bioinformatic methods and found what they were looking for – DYRK1A, one such protein kinase, acts on the TOM complex. “With this, we actually found the needle in the haystack,” says Walter.

###

The work was done in collaboration with Professor Nora Vögtle, Professor Tilman Brummer and Professor Claudine Kraft from the University of Freiburg as well as researchers at the Universities of Göttingen, Dortmund and Fribourg, Switzerland. Meisinger is speaker of the Collaborative Research Center “Dynamic Organization of Cellular Protein Mechanisms” at the University of Freiburg. In addition, he is a member of the Freiburg Cluster of Excellence CIBSS – Centre for Integrative Biological Signalling Studies, the research training group 2202 Transport across and into Membranes, and 2606 ProtPath.

Publication:

Walter, C., Marada, A., Suhm, T., Ernsberger, R., Muders, V., Kücükköse, C., Sánchez-Martín, P., Hu, Z., Aich, A., Loroch, S., Solari, F.A., Poveda-Huertes, D., Schwierzok, A., Pommerening, H., Matic, S., Brix, J., Sickmann, A., Kraft, C., Dengjel, J., Dennerlein, S., Brummer, T., Vögtle, F.N., and Meisinger, C. (2021): Global kinome profiling reveals DYRK1A as critical activator of the human mitochondrial import machinery. In: Nat. Commun. 12:4284. DOI: 10.1038/s41467-021-24426-9

Media Contact
Professor Dr. Chris Meisinger
[email protected]

Original Source

https://www.pr.uni-freiburg.de/pm-en/press-releases-2021/how-cells-control-mitochondria

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-24426-9

Tags: BiochemistryBiologyMolecular Biology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Charting the Universe: Faster Mapping with Unmatched Precision

September 16, 2025
blank

Quantum Sensors Built to Withstand Extreme Pressures

September 15, 2025

Princeton Chemistry’s Hammes-Schiffer Unveils First-Principles Method for Molecular Polaritons

September 15, 2025

Smoking or Vaping Could Elevate Your Risk of Developing Diabetes, New Study Finds

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tiprelestat Shows Promise in COVID-19 Hospital Treatment

Boosting Immunotherapy in Advanced Prostate Cancer

Prioritizing Genes Linked to Sudden Unexplained Death

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.