• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cell Biology

How cells communicate

Bioengineer by Bioengineer
January 14, 2015
in Cell Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

During embryonal development of vertebrates, signaling molecules inform each cell at which position it is located. In this way, the cell can develop its special structure and function. For the first time now, researchers of Karlsruhe Institute of Technology (KIT) have shown that these signaling molecules are transmitted in bundles via long filamentary cell projections. Studies of zebrafish of the scientists of the European Zebrafish Resource Center (EZRC) of KIT revealed how the transport of the signaling molecules influences signaling properties. A publication in the Nature Communications journal presents the results.

How cells communicate

Control of cell differentiation in the central nervous system. Photo Credit: Image courtesy of Karlsruhe Institute of Technology

Organisms, organs, and tissues are complex three-dimensional systems that consist of thousands of cells of various types. During embryonal development of vertebrates, each cell requires information on the position at which it is located in the tissue. This position information enables the cell to develop a certain cell type for later execution of the correct function. This information is transmitted via signal molecules, so-called morphogenes. These morphogenes are not homogenously distributed in the tissue, their concentration varies. Various concentrations activate various genes in the target cell.

The cells in the developing central nervous system receive their position information from signal molecules belonging to the family of Wnt proteins. The concentration of Wnt proteins determines whether a cell differentiates to a cell of the forebrain or of the afterbrain. “Distribution of these signal molecules has to be controlled precisely,” Dr. Steffen Scholpp, head of a research group of the KIT Institute of Toxicology and Genetics (ITG), explains. “Smallest changes of the concentration or the transport direction may cause severe damage, such as massive malformations during embryonal development or formation of cancer.”

For the first time now, the working group of Dr. Steffen Scholpp has shown that the Wnt proteins are transmitted specifically via long cell projections, so-called filopodia. In the Nature Communications journal, the scientists report that the signaling factors are loaded on the tips of the filopodia only. In this way, signaling can start immediately upon contacting. The signaling factors bind to the corresponding receptors of the target cell and induce the correct cell response. “Now, the source cell can decide precisely which target cell receives how much signaling protein at which time,” Scholpp explains. The KIT researchers study zebrafish and human cell lines and succeeded in reproducing or reducing the filopodia and analyzing the resulting changes of signaling properties of the Wnt morphogenes.

Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology.

Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Amino acid recycling in cells: Autophagy helps cells adapt to changing conditions

December 10, 2020
IMAGE

Ferrets, cats and civets most susceptible to coronavirus infection after humans

December 10, 2020

Reductive stress in neuroblastoma cells aggregates protein and impairs neurogenesis

December 8, 2020

Deep Longevity publishes an epigenetic aging clock of unprecedented accuracy

December 8, 2020
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    47 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ancient Texts Decoded by Neural Networks

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Biodegradable, Mass-Produced Tungsten-PBAT Conductive Fiber

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.