• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How butterflies choose mates: gene controls preferences

Bioengineer by Bioengineer
March 21, 2024
in Biology
Reading Time: 3 mins read
0
Heliconius butterflies
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tropical Heliconius butterflies are well known for the bright colour patterns on their wings. These striking colour patterns not only scare off predators – the butterflies are poisonous and are distasteful to birds – but are also important signals during mate selection. A team led by evolutionary biologist Richard Merrill from LMU Munich, in cooperation with researchers from the Universidad del Rosario in Bogotá (Colombia) and the Smithsonian Tropical Research Institute (Panama), has now exploited the diversity of warning patterns of various Heliconius species to investigate the genetic foundations of these preferences. In the process, the scientists identified a gene that is directly linked to evolutionary changes in a visually guided behaviour, the first time such a connection has been demonstrated in an animal, as they report in the journal Science.

Heliconius butterflies

Credit: Carolin Bleese / LMU

Tropical Heliconius butterflies are well known for the bright colour patterns on their wings. These striking colour patterns not only scare off predators – the butterflies are poisonous and are distasteful to birds – but are also important signals during mate selection. A team led by evolutionary biologist Richard Merrill from LMU Munich, in cooperation with researchers from the Universidad del Rosario in Bogotá (Colombia) and the Smithsonian Tropical Research Institute (Panama), has now exploited the diversity of warning patterns of various Heliconius species to investigate the genetic foundations of these preferences. In the process, the scientists identified a gene that is directly linked to evolutionary changes in a visually guided behaviour, the first time such a connection has been demonstrated in an animal, as they report in the journal Science.

For their study, the researchers carried out hundreds of behavioural experiments to investigate the mating preferences of three Heliconius species in Colombia: Heliconius melpomene and Heliconius timareta, both of which have a bright red band on their forewing, and Heliconius cydno, which has a white forewing band. They discovered that males of all three species prefer partners that look like themselves, with no differences in the preferences of the two more distantly related red species.

Using genomic analyses, the researchers demonstrated that the preference for red females is associated with a genomic region where hybridization between these two red species has resulted in sharing of genetic material. “We managed to identify regucalcin1 as a key gene controlling visual preference, in these butterflies,” says Matteo Rossi, who carried out research on the butterflies in Merrill’s lab alongside fellow PhD candidate Alexander Hausmann. “If regucalcin1 is silenced, it impairs courtship toward conspecific females, proving a direct link between gene and behaviour,” explains Rossi.

Genetic exchange through hybridization

Further analyses by the scientists showed that regucalcin1 was transferred from H. melpomene to H. timareta sometime in their evolutionary past. “We’ve known for quite a while that the red colour pattern gene was introduced from one species to the other through hybridization, and suspected that the same might be true for the corresponding preference. To finally show it, and identify the specific gene is really exciting,” says Carolina Pardo-Diaz, Dean of Biology at the Universidad del Rosario, and one of the lead authors on the paper. Thanks to regucalcin1, the attractiveness of red females and thus the reproductive success of H. timareta was increased.

“We see differences in visual preferences all around us in nature when animals choose who to mate with. With our results, we were able to establish a direct link between a particular visual preference and a specific gene for the first time, and also demonstrate that hybridization can play an important role in the evolution of these behaviours,” emphasises Merrill.



Journal

Science

DOI

10.1126/science.adj9201

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Adaptive introgression of a visual preference gene

Article Publication Date

22-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Archaeal Promoters with Explainable CNN Models

October 26, 2025
blank

MicroRNA Dynamics in Mouse Liver During Echinococcus Infection

October 25, 2025

Comparing Four Exome Capture Platforms on DNBSEQ

October 25, 2025

EasyGeSe: Benchmarking Tool for Genomic Prediction Methods

October 25, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    194 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stigma, Support, and Stress in ADHD Parenting

Nurses’ Crucial Role in Suicide Prevention: A Review

Exploring Archaeal Promoters with Explainable CNN Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.