• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How bacteria cope with stress

Bioengineer by Bioengineer
March 7, 2022
in Biology
Reading Time: 2 mins read
0
Illustration
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When exposed to stress, bacteria allow their metabolism to take a break during which they suppress, for example, the incorporation of proteins into membranes. Scientists from Marburg, Freiburg and Munich have discovered this by biochemically investigating the stress response of microorganisms. The research group led by Marburg biochemist Gert Bange has reported their findings in the scientific journal Nature Communications.

Illustration

Credit: Max-Planck-Institute for Terrestrial Microbiology/Geisel

When exposed to stress, bacteria allow their metabolism to take a break during which they suppress, for example, the incorporation of proteins into membranes. Scientists from Marburg, Freiburg and Munich have discovered this by biochemically investigating the stress response of microorganisms. The research group led by Marburg biochemist Gert Bange has reported their findings in the scientific journal Nature Communications.

Bacteria respond to stress such as nutrient deficiency or heat with an adaptation of their metabolism, known as the stringent response. “Second messengers or alarm hormones play a central role in this process,” Bange explains.  Alarm hormones, for example, act on processes involving the signal recognition particle SRP. “SRP is essential for the formation of membrane proteins and protein secretion,” explains Bange’s collaborator Dr. Laura Czech, a lead author of the paper. The particle ensures that proteins reach their proper destination in the cell’s membranes.

“So far, it was not known to what regulatory mechanisms the signal-recognition particle is subjected to,” says co-author Christopher-Nils Mais, a doctoral researcher in Bange’s lab. The research team conducted molecular biological, biochemical as well as structural biological experiments to determine how the alarm hormones interact with the signal recognition particle.   

In particular, the researchers produced electron micrographs at very low temperatures showing how SRP binds to the protein production machinery.

Apparently, the alarm hormones prevent the signal-recognition particle from forming a complex with other molecules, which prevents it from performing its task of incorporating proteins into the membrane.

“Under harsh environmental conditions, bacterial cells can use shutting down important metabolic processes as a pause mechanism,” Gert Bange explains. This break allows the microorganisms to slow down their cellular processes and metabolism so they can recover as soon as conditions become more favorable, the authors hypothesize. “Inhibiting the metabolic pathway leading via the signal recognition particle could be an additional level of cellular control and pausing to survive during stressful times,” Gert Bange concludes.



Journal

Nature Communications

DOI

10.1038/s41467-022-28675-0

Method of Research

Experimental study

Article Title

Inhibition of SRP-dependent protein secretion by the bacterial alarmone (p)ppGpp

Article Publication Date

25-Feb-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Delegation May Boost Dishonest Behavior

Prenatal Counseling of Trisomy 18 Heart Defects

DeepSeek-R1 Boosts LLM Reasoning via RL

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.