• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How Australia got planted

Bioengineer by Bioengineer
May 22, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of Terrestrial Ecosystem Research Network

A new study has uncovered when and why the native vegetation that today dominates much of Australia first expanded across the continent. The research should help researchers better predict the likely impact of climate change and rising carbon dioxide levels on such plants here and elsewhere. The dominant vegetation, so-called C4 plants, includes a wide variety of tropical, subtropical and arid-land grasses. , C4 plants also include important worldwide crops such as sugarcane, corn, sorghum and millet. The research has just been published online in the journal Geophysical Research Letters.

C4 refers to the metabolic pathway that certain plants use to conduct photosynthesis, as opposed to the method used by the C3 plants, which dominate cooler, higher-latitude regions. C4 organisms comprise about a quarter of the world's plant life today. In many hotter regions, they came to dominate about 6 million to 10 million years ago. They apparently evolved to photosynthesize under warm, dry, conditions, and low levels of atmospheric carbon dioxide, which developed at that time. They have a special ability to take advantage of strong summer rainfall.

To figure when the plants spread across the Australian landscape, the researchers analyzed fossilized pollen and waxy substances found in leaves that had been swept off the continent, to be preserved in deep-sea sediments. Surprisingly, in northwest Australia C4 plants did not expand at the same time as they did on other continents, in spite of regionally arid conditions and falling atmospheric CO2, both of which should have promoted C4 vegetation. Instead, the researchers found, the vegetation expanded only 3.5 million years ago long after the other regions. The authors say that the rise of C4 plants in Australia was likely the result of a strengthened summer monsoon that developed around that time.

"Our results suggest that there was not a single factor that drove the transformation of tropical ecosystems around the globe," said coauthor Pratigya Polissar, a research scientist at Columbia University's Lamont-Doherty Earth Observatory.

In the future, human influence on the atmosphere is likely to play an important role in the distribution of C4-dominated ecosystems. Rising carbon dioxide will place C4 plants at a disadvantage; on the other hand, rising temperature and changes in the season and amount of rainfall could favor them, said project leader Francesca McInerney of the University of Adelaide. In Australia, C4 plants are critical to grazing, soil carbon storage and biodiversity, she pointed out.

"Understanding how changing CO2 levels and other environmental factors affected these plants in the past can help us evaluate and plan for effects from increasing CO2 levels and climate change today," said Polissar.

###

The study's lead author is Jake Andrae, a PhD. candidate at the University of Adelaide. The other authors are S. Howard and P.A. Hall, also of Adelaide; J.M.K. Sniderman of the University of Melbourne; and Sam Phelps of Lamont-Doherty.

Scientist contact: Pratigya Polissar [email protected]

Media Contact

Kevin Krajick
[email protected]
212-854-9729
@earthinstitute

http://www.earth.columbia.edu

Related Journal Article

http://dx.doi.org/10.1029/2018GL077833

Share13Tweet7Share2ShareShareShare1

Related Posts

Feral Pigeons: Feeding Habits in Urban vs. Rural

Feral Pigeons: Feeding Habits in Urban vs. Rural

October 17, 2025
Gender Disparities in Obesity and OSA Complications

Gender Disparities in Obesity and OSA Complications

October 17, 2025

Justicia gendarussa: New Insights on Pollination Strategies

October 17, 2025

Integrative Methods for Epimedium Species Classification

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1257 shares
    Share 502 Tweet 314
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    238 shares
    Share 95 Tweet 60
  • New Study Reveals the Science Behind Exercise and Weight Loss

    107 shares
    Share 43 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

Jump Trading’s Kevin Bowers Joins Hertz Foundation Board of Directors

Capillary Flow Printing of Submicron Carbon Nanotube Transistors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.