• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How ancient sea creatures can inform soft robotics

Bioengineer by Bioengineer
February 10, 2024
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ROCKVILLE, MD – Soft robotics is the study of creating robots from soft materials, which has the advantage of flexibility and safety in human interactions. These robots are well-suited for applications ranging from medical devices to enhancing efficiency in various tasks. Additionally, using different forms of robotic movement may also serve us well in exploring the ocean or space, or doing certain jobs in those environments.

How Ancient Sea Creatures can Inform Soft Robotics

Credit: Image courtesy of Richard Desatnik.

ROCKVILLE, MD – Soft robotics is the study of creating robots from soft materials, which has the advantage of flexibility and safety in human interactions. These robots are well-suited for applications ranging from medical devices to enhancing efficiency in various tasks. Additionally, using different forms of robotic movement may also serve us well in exploring the ocean or space, or doing certain jobs in those environments.

To broaden our understanding of locomotion, Richard Desatnik, who works in the labs of Philip LeDuc and Carmel Majidi at Carnegie Mellon University and collaborates with paleontologists from Europe, turns to the past. The team creates robots with the movement of ancient animals such as pleurocystitids, a sea creature that lived around 500 million years ago. Desatnik will present their findings from the process of building a soft robot based on pleurocystitids at the 68th Biophysical Society Annual Meeting, to be held February 10 – 14, 2024 in Philadelphia, Pennsylvania.

“We’ve learned a lot from modern creatures, but that’s only 1% of the animals that have existed during our planet’s history, and we want to see if there is something we can learn from the other 99% of creatures that once roamed the earth,” Desatnik said. He added, “there are animals that were very successful for millions of years and the reason they died out wasn’t from a lack of success from their biology—there may have been a massive environmental change or extinction event.”

Desatnik and colleagues started off with fossils of pleurocystitids, which are related to present-day sea stars and sea urchins but that had a muscular stem—a kind of tail—to move. They used CT scans to get a better idea of the 3D shape. Computer simulations suggested the ways it may have propelled itself through the water. Based on these data, they built a soft robot that mimics the prehistoric creature.

Their work suggests that a sweeping motion of the stem could have helped these animals glide along the ocean floor. They also found that a longer stem—which the fossil record suggests pleurocystitids developed over generations—could have made them faster without requiring much more energy.

These underwater soft robots may help in the future, “whether it’s geologic surveying, or fixing all the machinery that we have underwater,” Desatnik points out.

The researchers’ approach of using extinct animals to inform soft robotic design, which they call paleobionics, has the potential to further our understanding of evolution, biomechanics, and soft robot movements.



Share12Tweet8Share2ShareShareShare2

Related Posts

Streamlined Genomes, Maximum Efficiency: How Symbiotic Bacteria with Minimal DNA Deliver Optimal Support to Their Hosts

Streamlined Genomes, Maximum Efficiency: How Symbiotic Bacteria with Minimal DNA Deliver Optimal Support to Their Hosts

August 14, 2025
Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

August 14, 2025

Amyloid-Based Antiphage Defense in E. coli Uncovered

August 14, 2025

Critically Endangered Plains-Wanderer Discovered in Uncharted Habitat

August 14, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GTPase-Activating Protein1 Dysregulation Drives Fatty Liver Disease

Dr. Alfredo García-Alix: Pioneering Brain-Aware Neonatal Care

GLUT3 Boosts Glioblastoma Drug Uptake, Sensitivity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.