• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

How a Mediterranean-style diet may reduce heart failure in the aged

Bioengineer.org by Bioengineer.org
January 18, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UAB

BIRMINGHAM, Ala. – In mouse experiments, University of Alabama at Birmingham researchers have shown how aging and excess dietary fat create signals that lead to heart failure after a heart attack.

Clarifying the mechanism of this harmful pathway is important because nearly 5 million people in the United States suffer heart failure as an age-related disease following heart attacks. Half of them die within five years, and the annual cost for health care, medications and missed work is $32 billion.

Knowledge of the dysfunctional lipid signaling that triggers heart inflammation and heart failure could be essential to discovering therapeutic treatments for the millions of aging patients at risk of heart failure after heart attacks.

The problem of heart failure is a nonresolving, overactive inflammation at the heart. After a tissue injury, such as death of muscle tissue in a heart attack, the body has a beneficial, early acute inflammation response that removes dead cells and begins repairs to the injured area. In healthy healing, the acute inflammation resolves, and a healing process follows.

In healthy healing, particular lipids that the body produces from essential dietary fat appear to act as signals to resolve the early acute inflammation, including a group of lipids called resolvins.

In contrast to such healthy healing, UAB researchers have found that a combination of age and excess omega-6 fatty acid in the mouse diet led to increased heart inflammation as compared to aged mice that ate a lower-fat, lab chow diet.

Intriguingly, the typical Western diet is much higher in the ratio of omega-6 fatty acids to omega-3 fatty acids, similar to the excess omega-6 fatty acid diet given to the mice. The so-called Mediterranean-style diet, which has much less meat, has a much lower ratio of omega-6 to omega-3 fatty acids, and people who eat a Mediterranean-style diet are known to develop less heart disease.

UAB researchers, led by Ganesh Halade, Ph.D., assistant professor in the Division of Cardiovascular Medicine, UAB Department of Medicine, report that four steps led to the nonresolving inflammation.

The aged mice that were fed with excess omega-6 fatty acid, in contrast to lean aged mice, had: 1) lower amounts of three types of lipoxygenase enzymes in the dead area of the heart muscle, enzymes that can produce resolving signal lipids such as the resolvins from dietary omega-3 fatty acids; 2) lesser amounts of resolvins and several other lipid signals that help resolve acute inflammation; 3) increased amounts of macrophage immune cells that are pro-inflammatory; and 4) increased kidney injury and increased levels of two signaling cytokines that promote inflammation — tumor necrosis factor-alpha and interleukin-1-beta.

Thus, as Halade and colleagues report in the journal Aging, excess fatty acid intake magnifies chemokine signaling after a heart attack in aged mice, and this drives the signaling network between the heart and spleen and the heart and kidneys toward a nonresolving microenvironment.

The excess omega-6 fatty acid for the mice came from enriching their diet with safflower oil. Techniques used to elucidate the dysregulated lipid signaling pathway in the aged mice included liquid chromatography-mass spectrometry metabolipidomics to analyze lipid mediators and flow cytometry to analyze immune cells.

###

Besides Halade, co-authors of the paper, "Aging Dysregulates D- and E-Series Resolvins to Modulate Cardiosplenic and Cardiorenal Network Following Myocardial Infarction," are Vasundhara Kain, Ph.D., Laurence M. Black, Sumanth D. Prabhu, M.D., and Kevin A. Ingle, all of the Division of Cardiovascular Disease, UAB Department of Medicine.

At UAB, Prabhu is the Mary Gertrude Waters Chair of Cardiovascular Medicine.

Media Contact

Jeff Hansen
[email protected]
205-975-3914

http://www.uab.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing Climate Impact of Green Biorefineries in Denmark

Assessing Climate Impact of Green Biorefineries in Denmark

September 3, 2025
blank

Microbiome Traits Boost Plant Growth, Sustain Agriculture

September 3, 2025

Nanocavity-Enabled Robust Mode-Locking in Fiber Lasers

September 3, 2025

Exploring Glioma Stem Cell Variations and Treatments

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Climate Impact of Green Biorefineries in Denmark

Microbiome Traits Boost Plant Growth, Sustain Agriculture

Nanocavity-Enabled Robust Mode-Locking in Fiber Lasers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.