• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Honey bee colonies more successful by foraging on non-crop fields

Bioengineer by Bioengineer
March 20, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ARS-USDA

TUCSON, ARIZONA, March 20, 2019–Honey bee colonies foraging on land with a strong cover of clover species and alfalfa do more than three times as well than if they are put next to crop fields of sunflowers or canola, according to a study just published in Scientific Reports by an Agricultural Research Service (ARS) scientist and his colleagues.

Managed honey bee colonies placed from May until October next to land in the U.S. Department of Agriculture Conservation Reserve Program (CRP, https://www.fsa.usda.gov/programs-and-services/conservation-programs/conservation-reserve-program/) in North Dakota were more robust with better colony health including higher numbers of bees and increased ability to turn nectar and pollen into vitellogenin–a compound that plays a number of roles including serving as the base for producing royal jelly, which bees use to nurture larvae and turn larvae into queens.

Vitellogenin also is a critical food storage reservoir for honey bee colonies, and a colony’s success in the spring depends on total vitellogenin reserves carried by specialized bees over the winter. Vitellogenin prolongs the lifespans of queens and forager bees as well as strongly influencing key behaviors that increase colony survival such as determining how old bees are before they begin foraging and whether they tend to gather nectar or pollen.

After spending six months foraging on CRP land and then overwintering, more than 78 percent of the colonies were graded A, the highest level commanding the highest price for pollination services in January, meaning a colony has six or more frames well filled with bees, capped cells and bee brood (larvae).

With colonies kept near intensely cultivated fields and then overwintered under the same circumstances to the CRP apiaries, only 20 percent could be rated Grade A and 55 percent were less than 2 frames or dead.

“With California almond growers having paid an average of $190 per Grade A colony in the 2018 almond pollination season, the need for beekeepers to have access to land that has diverse and substantial nectar and pollen sources is obvious,” explained ARS research microbiologist Kirk E. Anderson. Anderson is with ARS’ Carl Hayden Bee Research Center in Tucson, Arizona.

Anderson and his team, including ARS molecular biologist Vincent Ricigliano, also profiled several molecular colony level biomarkers, looking for a way to simplify how researchers can measure how well a honey bee colony is doing in different foraging conditions while overcoming individual bee variation.

They found that higher levels of vitellogenin stores were the best predictor of colony size after winter. Higher levels also were associated with increased production of antioxidant enzymes–which reduce cell damage–and greater production of antimicrobial peptides, which contribute to disease resistance.

The researchers eliminated other potential common causes of colony decline except for forage resource, highlighting the importance of pollen and nectar quality provided by the area surrounding the apiary. While the link between the quality of forage and colony health is generally known, this study highlights the value of agriculturally marginal (CRP) landscapes for honey bee production in a region that hosts close to half the U.S. managed bee population (about 1 million colonies) during the summer.

“We’ve also shown that the benefits of high quality forage such as that provided by CRP land carries right through the overwintering period and leaves bees in the best shape to build up their numbers before being needed to pollinate almonds in February and early March,” said Ricigliano.

Our results provide land managers and scientists with methods to evaluate the relationship between bees and the landscape. For beekeepers, it provides a basis for making decisions about where to put their apiaries for the summer and fall after crop pollination ends so that the colonies will be in a position to build up robust healthy numbers in time for the migration to California for almond pollination, Anderson added.

###

The Agricultural Research Service is the U.S. Department of Agriculture’s chief scientific in-house research agency. Daily, ARS focuses on solutions to agricultural problems affecting America. Each dollar invested in agricultural research results in $20 of economic impact.

Media Contact
Kim Kaplan
[email protected]

Tags: AgricultureBiodiversityEcology/EnvironmentEntomologyNaturePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025
Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.