• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

HIV-AIDS: Following your gut

Bioengineer by Bioengineer
September 18, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Montreal, Sept. 18, 2017 – Researchers at the University of Montreal Hospital Research Centre (CRCHUM) have discovered a way to slow viral replication in the gastrointestinal tract of people infected by HIV-AIDS.

This advance, published in JCI Insight, might well lead to the development of a new therapeutic strategy to supplement antiretroviral therapy (ART), improving the control of viral replication in HIV-infected persons and preventing complications associated with chronic infection.

"We have identified a molecule that stimulates HIV replication in CD4 T cells located in the gut," said Petronela Ancuta, a CRCHUM researcher and professor at UdeM. "We have also started testing medications to block this replication and decrease inflammation of the intestinal mucosa. This is a promising new approach to eradicate HIV, or at least to achieve functional cure."

The ART used to treat HIV-infected persons can decrease viral loads to often undetectable blood levels, and is effective in preventing evolution of the infection towards acquired immunodeficiency syndrome (AIDS). But HIV is tenacious. "In spite of the effectiveness of antivirals, it hides in specific immune system cells, the CD4 T cells, which harbour the virus and form viral 'reservoirs' in various peripheral tissues, particularly in the gastrointestinal tract," Ancula explained. "Inside these 'reservoirs,' some viral organisms continue to replicate, which leads to harmful inflammation in the gut. Hence the idea to limit viral replication at all levels and to counteract inflammation."

"The digestive tract is an environment conducive to viral 'reservoirs'," added the study's lead author, Delphine Planas, a CRCHUM doctoral candidate. "Our research demonstrates that CD4 T cells which migrate from the blood to the gut will be modified. En route, they acquire the tools that aid the virus in infecting them. Identifying these tools helps us understand why the gut represents a sort of sanctuary favourable to HIV, and thus how to combat these 'reservoirs'."

An HIV 'postal code'

CD4 T cells migrate from the blood to the gut thanks to marker molecules expressed on their surface; some of these, called CCR6, act like a "postal code" for the cells, indicating they should direct themselves to the gut. Previously, the researchers had shown that cells expressing the CCR6 molecule are preferential targets of in-vitro infection, and are viral "reservoirs" in subjects being treated with ART.

Using biopsies of the sigmoid colon and blood of HIV-infected persons on ART therapy, Ancuta's team, along with one led by Jean-Pierre Routy of the Research Institute of the McGill University Health Centre (RI-MUHC), has now discovered that in the colon, the CD4 T cells which express the CCR6 postal code also contain a large amount of another molecule called mTOR, an important regulator of metabolic mechanisms.

"It is the mTOR molecule which is in part responsible for the high vulnerability to HIV of the CD4 T lymphocytes expressing CCR6 and residing in the gut," explained Planas.

A potential treatment

By interfering with mTOR activity during in-vitro experiments with existing medications, researchers have been able to significantly reduce HIV replication in the cells of HIV-infected patients whose viral load was undetectable.

Medications inhibiting mTOR activity are used successfully in the treatment of cancer and diabetes. Other studies are needed to validate their use in the treatment of HIV-AIDS. But researchers already recognize the potential for improving quality of life and increasing chances of curing HIV-infected patients by using mTOR inhibitors to supplement antiretroviral treatments.

"In specifically targeting CD4 T cells carrying the CCR6 molecule, which contains dormant HIV, we think these medications will decrease gastrointestinal inflammation of individuals on ART," Ancuna said. "Over the long term, we hope that this type of treatment will reduce even more the amount of virus persisting in gut reservoirs. Therefore, this is an important strategy to cure HIV, and one that deserves to be tested."

###

About this study

"HIV-1 selectively targets gut-homing CCR6+CD4+ T cells via mTOR-dependent mechanisms," by Delphine Planas et al, was published in JCI Insight on August 16, 2017. The study was supported by grants from the Canadian Institutes of Health Research (CIHR) (MOP-82849 and MOP-114957), the CIHR Canadian HIV Trials Network (CTN 247), the Fonds de recherche du Québec – Santé (FRQS), the AIDS and Infectious Diseases Network (AIDS/DI) of the FRQS, and by a team grant from the Canadian HIV Cure Enterprise (HIG-133050) of the CIHR, in partnership with the Canadian Foundation for AIDS Research and the International AIDS Society. For additional information, read the full study at https://doi.org/10.1172/jci.insight.93230

Source: University of Montreal Hospital Research Centre (CRCHUM)

Information:

Isabelle Girard
Information Advisor, CRCHUM
Phone: +1 514 890-8000, ext. 12725 | @CRCHUM
[email protected]

Media Contact

Isabelle Girard
[email protected]
514-890-8000 x12725
@uMontreal_news

http://bit.ly/mNqklw

http://dx.doi.org/10.1172/jci.insight.93230

Share12Tweet7Share2ShareShareShare1

Related Posts

Meerkats Gain Health Benefits Through Group Membership

Meerkats Gain Health Benefits Through Group Membership

October 30, 2025
Prenatal COVID-19 Infection Associated with Elevated Risk of Neurodevelopmental Disorders in Offspring

Prenatal COVID-19 Infection Associated with Elevated Risk of Neurodevelopmental Disorders in Offspring

October 30, 2025

Decoding the Painted Lady Butterfly’s Mitochondrial Genome

October 30, 2025

PhET Interactive Simulations Honored with Meggers Project Award

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Biliary Stricture Diagnosis with ROSE-Enhanced Biopsy

Researchers Discover Novel Energy Potential in Iron-Based Materials

Impact of Childhood Trauma on Autistic Youth Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.