• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Hired blade: Anchoring complex in plant cells recruits its own katana sword

Bioengineer by Bioengineer
September 6, 2025
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Nara Institute of Science and Technology find that an anchoring complex stabilizes microtubule creation sites within plant cells, then recruits katanin – named after the katana sword – to cut new microtubules

Ikoma, Japan – The katana, a Japanese sword, may be thought of solely as a weapon used by the samurai. But researchers from Japan have discovered that not only do plants wield their own katanas within their cells, they recruit them to specific locations within those cells to do their work.

In a study published in Nature Communications, researchers from Nara Institute of Science and Technology have revealed that the enzyme katanin, which is named after the katana, is used by an anchoring complex to cut microtubules at specific locations of the framework within individual plant cells.

Katanin severs microtubules in cells, which is an important step in cell division and central to the development of many organisms, including plants and animals. Microtubules form part of the cytoskeleton, a complex network of protein filaments found in all cells. The severing performed by katanin enables mobility, which is important during development, and treadmilling – a phenomenon where one end of a filament lengthens as the other shrinks, which results in a section of filament that seems to ‘move’ like a treadmill.

“Katanin severs microtubules at specific locations in plant and animal cells, and this leads to active reorganization of the microtubule cytoskeleton,” says senior author of the study Takashi Hashimoto. “But the mechanisms for targeting this extraordinary enzyme at specific sites within the cell are not well understood – these are what we wanted to investigate.”

The team’s genetic and cell biology research results showed that the microtubule anchoring complex Msd1-Wdr8 is used to stabilize microtubule nucleation sites (where microtubules are formed) in plant cells to prevent early release of the new microtubules (called ‘daughter microtubules’). But in a seemingly counterintuitive twist, Msd1-Wdr8 then turns around and recruits katanin to the same location to enable the efficient release of daughter microtubules.

“These ‘glue-and-cut’ functions performed by Msd1-Wdr8 and their effects on microtubule stability may seem confusing at first, but they probably enable strict control of microtubule release by the katanin activity,” explains Hashimoto.

This study will inform future research on whether the Msd1-Wdr8 complex in animal cells also recruits katanin, and whether other sites use similar mechanisms for the stabilization and release of daughter microtubules. The results of this study will be of interest to cell biologists, especially those working on cytoskeletons, in plants and other organisms.

###

Resource

Title: An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites

Authors: Noriyoshi Yagi, Takehide Kato, Sachihiro Matsunaga, David W. Ehrhardt, Masayoshi Nakamura & Takashi Hashimoto

Journal: Nature Communications

DOI: 10.1038/s41467-021-24067-y

Information about project leader Hashimoto’s lab can be found at the following website: https://bsw3.naist.jp/eng/courses/courses103.html

Media Contact
Takahito Shikano
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-24067-y

Tags: Anchoring complexBiologyCell BiologyCytoskeleton organizationGeneticsKatanin enzymeMicrotubule dynamicsPlant cell biologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Ambivalent Sexism’s Impact on Chinese Women’s Eating Disorders

October 28, 2025

Streamlining Abortion Policy: A Systems Thinking Approach

October 28, 2025

Pembrolizumab vs. Chemotherapy: Cost-Effectiveness in Lung Cancer

October 28, 2025

Inhibiting Syndecan-2 Reduces Thyroid Cancer Invasiveness

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1288 shares
    Share 514 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ambivalent Sexism’s Impact on Chinese Women’s Eating Disorders

Streamlining Abortion Policy: A Systems Thinking Approach

Pembrolizumab vs. Chemotherapy: Cost-Effectiveness in Lung Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.