• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Hijacking hormones for plant growth

Bioengineer by Bioengineer
August 8, 2018
in Biology
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Hormones designed in the lab through a technique combining chemistry, biology, and engineering might be used to manipulate plant growth in numerous ways, according to a New Phytologist study.

Scientists harnessed the power of synthetic chemistry to design compounds similar to auxin, a small chemical hormone that controls nearly all aspects of plant growth, development, and behavior.

These compounds might be used for various agricultural purposes, for example for manipulating the ripening of fruit crops or for preventing the undesirable spread of transgenes (genes that have been transferred from one organism to another) in the field.

"It is truly gratifying as a plant biologist that collaboration with synthetic chemists could yield such a game-changing tool. With a new version of auxin and its engineered receptor, we could possibly pinpoint the desired auxin action in target plants or tissues of interest without disrupting the physiology of other plant parts or neighbors," said lead author Dr. Keiko Torii, of the University of Washington, in Seattle.

###

Media Contact

Penny Smith
[email protected]
44-012-437-70448

http://newsroom.wiley.com/

http://dx.doi.org/10.1111/nph.15337

Share12Tweet7Share2ShareShareShare1

Related Posts

Horses: Potential Allies in Forest Fire Prevention

September 18, 2025
International Clinical Trial Reveals Menopause Drug Cuts Hot Flashes by Over 70%

International Clinical Trial Reveals Menopause Drug Cuts Hot Flashes by Over 70%

September 18, 2025

New Book Debunks Common Misconceptions About Evolution and Humanity’s Role in the Tree of Life

September 18, 2025

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Horses: Potential Allies in Forest Fire Prevention

Advanced Flexible Optical Touch Sensor Accurately Measures Pressure and Locates Touch Points

PANoptosis: A Promising New Strategy in the Battle Against Liver Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.