• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Highly sensitive and self-healing conductive hydrogels fabricated from cationic cellulose nanofiber-dispersed liquid metal for strain sensors

Bioengineer by Bioengineer
April 21, 2023
in Chemistry
Reading Time: 3 mins read
0
Morphology of CCNF-stabilized LM emulsion and properties of hydrogel
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This study is led by Dr. Wenxia Liu (State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science). To uniformly disperse LM into hydrogel, she conceived and designed using CCNFs rich in quaternary ammonium groups to encapsulate LM droplets through an approach of Pickering emulsion. “The strong electrostatic attraction and ion-dipole interaction between the quaternary ammonium groups of CCNFs and the hydroxyl groups on LM droplet surfaces were expected to prevent the LM droplets from aggregation and coalescence. The incorporation of CCNFs into hydrogel with the LM droplets was also expected to improve the mechanical properties of hydrogel by forming a reversible hard polymer network. “Using CCNFs to prevent LM droplets from coalescence is a strategy of more with less” Liu says.

Morphology of CCNF-stabilized LM emulsion and properties of hydrogel

Credit: ©Science China Press

This study is led by Dr. Wenxia Liu (State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science). To uniformly disperse LM into hydrogel, she conceived and designed using CCNFs rich in quaternary ammonium groups to encapsulate LM droplets through an approach of Pickering emulsion. “The strong electrostatic attraction and ion-dipole interaction between the quaternary ammonium groups of CCNFs and the hydroxyl groups on LM droplet surfaces were expected to prevent the LM droplets from aggregation and coalescence. The incorporation of CCNFs into hydrogel with the LM droplets was also expected to improve the mechanical properties of hydrogel by forming a reversible hard polymer network. “Using CCNFs to prevent LM droplets from coalescence is a strategy of more with less” Liu says.

Master degree candidate Mr. Shihao Wu further designed the polymer matrix for the conductive hydrogel. “By inducing acrylic acid (AA) polymerization and crosslinking of poly(acrylic acid) (PAA) in the presence of a CCNF-stabilized LM emulsion, a conductive hydrogel was expected to be prepared with the formation of reversible hydrogen bonds, ionic coordination, electrostatic attraction and ion-dipole interaction among CCNFs, LM droplets, and PAA” Wu says.

Wu and another master degree candidate Miss Bingyan Wang performed the experiments in Liu’s Laboratory of Qilu University of Technology. The team collected and figured the related data. Liu and Wu analyzed the morphology and properties of the as-prepared LM emulsion and hydrogel.

The team found that bulk Ga could be broken into droplets in the presence of CCNFs under sonification. The formed Ga droplets possess a regular spherical shape with CCNFs covering their surfaces, where the CCNFs form mechanical barriers to prevent the Ga droplets from coalesce and aggregation, confirming the excellent stabilization effect of CCNFs on Ga droplets. In the presence of CCNF-encapsulated Ga droplets, a hydrogel could be formed at room temperature owing to the in situ polymerization of AA and ionic crosslinking of PAA promoted by Ga droplets and Ga3+ formed by reaction of Ga with AA, respectively. The ionically crosslinked PAA contributes a soft network while the reversibly crosslinked CCNFs by hydrogen, electrostatic attraction and ion-dipole interaction contribute a hard polymeric network for the hydrogel. The occurrence of double network and Ga/Ga3+ as well as the reversible crosslinking enables the hydrogel to possess good conductivity, excellent stretchability and tensile strength, good adhesiveness, quick self-healing capacity (see below).

The researchers also explored the sensing performance and application of the hydrogels as a strain sensing material. They found that the hydrogel exhibited a very high sensing sensitivity (GF = 16.2), a low strain detection limit (less than 1%), a short response/recovery time (107/91 ms), and good repeatability and durability. When directly attached to human body via its adhesiveness, the hydrogel-based strain sensor could repeatedly monitor various human activities (see below). “The excellent sensing performance, self-adhesiveness and self-healing capacity enable the hydrogel-based strain sensor to be a good candidate for wearable electronics.” Wu and Liu say.

The good stability of LM emulsion and the compatibility of LM droplets with polymeric matrix are critical for uniformly dispersing LM droplets in hydrogel and fabrication of conductive hydrogels with high sensing preformation. The CCNFs provide good mechanical barriers for Ga droplets and improve the compatibility of Ga with PAA, enabling Ga droplets uniformly dispersing in PAA hydrogel. The combination of Ga, CCNFs and PAA allows the hydrogel to possess multifunctional properties and high sensing performance.

See the article:

Highly sensitive and self-healing conductive hydrogels fabricated from cationic cellulose nanofiber-dispersed liquid metal for strain sensors

https://doi.org/10.1007/s40843-022-2328-8



Journal

Science China Materials

DOI

10.1007/s40843-022-2328-8

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perpendicular-Anisotropy Spin Ice Enables Tunable Reservoir Computing

Nutrient Sources’ Influence on Gladiolus Growth and Soil Microbes

Vitamin D’s Impact on Autism: A Clinical Trial

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.