• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Higher-order topological superconductivity in monolayer Fe(Te,Se)

Bioengineer by Bioengineer
July 13, 2021
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

In particle physics, a Majorana Fermion is charge neutral and its antiparticle is just itself. In condensed matter physics, a Majorana zero mode (MZM) is a quasi-particle excitation, which appears in the surfaces or edges of topological superconductors. Unlike the ordinary particles or quasi-particles that obey boson or fermion statistics, MZM obeys non-abelian statistics, a key property that makes MZM the building block for realizing topological quantum computation. Currently major experimental efforts focus on heterostructures made of superconductors and spin-orbit coupled systems (such as semiconducting nano-wires and topological insulators), where evidences of MZMs have been found. Unambiguous detection and manipulation of MZMs in these heterostructures, however, heavily rely on the superconducting proximity effect that suffers from the complexity of the interface. Furthermore, the low operation temperature of conventional superconducting materials complicates further manipulation of MZMs.

Iron-based superconductor was discovered in 2008 by the Japanese scientist Hideo Hosono as the second class of high-Tc materials. In the past decade, intensive studies focused on their unconventional superconductivity and strong correlation effect. Recently, the discovery of topological surface states on the surfaces of iron based superconductor Fe(Te,Se) renders it a unique system integrating both high-Tc superconductivity and topology. Therefore, it provides an exciting opportunity to realize MZM at comparably high critical temperature Tc. Moreover, the monolayer Fe(Te,Se) has a maximum Tc of 40 K and good tenability with a large in-plane upper critical field.

In a study published in Beijing-based National Science Review, a research team led by Chaoxing Liu, an associate professor from Pennsylvania State University, proposed to realize MZMs in monolayer Fe(Te,Se) by applying an in-plane magnetic field and electric gating.

The researchers found that applying an in-plane magnetic field can drive monolayer Fe(Te,Se) into the higher-order topological superconducting phase, in which the MZMs can appear at the corners. Furthermore, through electric gating, MZM can also occur at the domain wall of chemical potentials at one edge and certain type of tri-junction in the two-dimensional bulk (see Figure). According to their estimation, the needed magnetic field is well below the in-plane upper critical magnetic field of monolayer Fe(Te,Se) superconductor. In addition, rotating the magnetic field may provide an efficient approach to perform the braiding operation for the corner MZMs. Therefore, their study demonstrates that monolayer Fe(Te,Se) is a promising Majorana platform with scalability and electrical tunability and within reach of contemporary experimental capability.

###

This research received funding from the Office of Naval Research 330 (Grant No.N00014-18-1-2793), the Kaufman New Initiative research grant of the Pittsburgh Foundation, the German Research Foundation (DFG) through DFG-SFB 1170, project B04 and the Wuerzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project-id 39085490).

See the article:

Xianxin Wu, Xin Liu, Ronny Thomale and Chao-Xing Liu

High-Tc superconductor Fe(Se,Te) monolayer: an intrinsic, scalable and electrically tunable Majorana platform

Natl. Sci. Rev. (2021)

https://doi.org/10.1093/nsr/nwab087

Media Contact
Chaoxing Liu
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwab087

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwab087

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.