• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

High-precision imaging revealed what holds on the smallest light responsive gold chain

Bioengineer by Bioengineer
February 5, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Manufacture of chemical sensors and catalysts based on gold nanoclusters gained new light from recent cutting-edge research

IMAGE

Credit: The University of Jyväskylä/Karolina Sokolowska


Manufacture of chemical sensors and catalysts based on gold nanoclusters gained new light from recent cutting-edge research. Chemists at the University of Jyväskylä, Finland and the University of California succeeded in determining the atomic precise structure of a chain of gold nanoclusters attached to each other. In this study the researchers revealed the disulfide-bridging bond between the bound nanoclusters. Linked gold nanocluster structures advance our understanding of the optical and electronic response of these systems which hold future perspectives in nanoelectronics and bioimaging. The study was published in The Journal of Physical Chemistry Letters publication in January 2020.

These structures – practically huge molecules- were studied four years ago by a researchers at the Nanoscience Center of the University of Jyväskylä. At that time, researchers were the first in the world to build a chains of gold forged with atomic precision, which were named the world’s smallest gold chains (Nanoscale, 2016).

In a just released spatially resolved imaging study of individual bonds, researchers investigated the structure of the chain with the precision of atoms and provided experimental confirmation that, the gold nanoparticles are linked together by bridging disulfide bonds. The proof of disulfide linking was to date the subject of speculatithe researchers revealed the disulfide-bridging bond between the bound nanoclusters. Linked gold nanocluster structures advance our understanding of the optical and electronic response of these systems which hold future perspectives in nanoelectronics and bioimaging. The ston.

“Modifying the surface of nanoclusters and the molecules connecting them is a step closer to new biological, medical and electronic applications,” says Docent Tanja Lahtinen from the University of Jyväskylä.

A chain of nanoscale gold particles reacts with light.

“In these nanoscale superstructures, the electron clouds of the metal particles of adjacent particles are interconnected, opening up the possibility of studying the interactions between particles with very accurate theoretical calculations, now that we know, for sure, how the structures have formed,” says researcher Eero Hulkko.

The atomic precise structure was revealed by combining imaging techniques

The exploration of nanoscale chemical structures has promoted by the rapid development of chemically selective imaging techniques. Atomic resolution of individual molecules requires extremely high resolution and sensitivity of the equipment.

This study utilized the latest transmission electron microscopy technology (TEM).

The measurements were made at the IMRI center, University of California using the JEM-ARM300F Grand ARM TEM equipment, where currently has the best commercially available electron microscopy equipment.

“This study combined high-resolution electron microscopy (TEM) with high-sensitivity electron energy loss spectroscopy (EELS), which allowed simultaneous structural and spectroscopic analysis to determine the nanoscale structure, with X-ray photoelectron spectroscopy (XPS) analysis supported by the above-mentioned data.” review by researcher Karolina Sokolowska from the University of Jyväskylä.

###

This research was part of a research collaboration and researcher exchange with the Nanoscience Center (NSC) at the University of Jyväskylä and the Chemistry at the Space-Time Limit Center (CaSTL) at the University of California.

The study was conducted at the new IMRI (Irvine Materials Research Institute) Materials Research Center at the University of California, Irvine (UCI) campus.

Researchers included Karolina Sokolowska, Eero Hulkko and Docent Tanja Lahtinen from the University of Jyväskylä, Professor Ara Apkaria and Researcher Zhongyue Luan from the University of California, and Noelia Barrabés and Christoph Rameshan from the Technical University of Vienna.

Link to the research article: https://pubs.acs.org/doi/10.1021/acs.jpclett.9b03496

For further information:

Docent Tanja Lahtinen, [email protected], tel. +358 40 805 3697

Communications officer Tanja Heikkinen, [email protected], tel. +358 50 5818351

Media Contact
Tanja Lahtinen
[email protected]
358-408-053-697

Related Journal Article

http://dx.doi.org/10.1021/acs.jpclett.9b03496

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Sociodemographics Affect Quality of Life Post-Prostatectomy

September 10, 2025

RSV Can Severely Impact Even Healthy Children, New Research Shows

September 10, 2025

Keto Diet May Alleviate Depression Symptoms Among College Students, Study Finds

September 10, 2025

Lactobacillus crispatus Linked to Healthy Pregnancy Outcomes

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    51 shares
    Share 20 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sociodemographics Affect Quality of Life Post-Prostatectomy

RSV Can Severely Impact Even Healthy Children, New Research Shows

Keto Diet May Alleviate Depression Symptoms Among College Students, Study Finds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.