• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

High performance polarization sensitive photodetectors on 2D β-InSe

Bioengineer by Bioengineer
July 13, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

To extract the polarization information of incident light, polarization-sensitive photodetectors (PSPDs) exhibit significant practical application in both military and civil areas, like bio-imaging, remote sensing, night vision, and helmet-mounted sight for fighter plane. Optical filters combined with polarizers are usually needed for traditional photodetectors to realize polarized light detection. But it will increase the size and complexity of devices. To obtain a small-size PSPD, one-dimensional (1D) nanomaterials with geometrical anisotropy, such as nanowires, nanoribbons, and nanotubes, have been used as the sensitive materials for PSPDs, which can directly identify the polarization information of incident light without any optical filters and polarizers. However, it is not an easy task for patterning and integrating these 1D nanochannels for mass production of PSPDs.

Atomically layered two-dimensional (2D) semiconductors with low crystal symmetry show great potential in micro-nano PSPDs recently due to their intrinsically in-plane anisotropic properties. For example, SnS, ReS2, GeS2, GeAs2, AsP and black phosphorus (BP) exhibit an obvious in-plane anisotropy behavior in carrier transport, thermal conductivity, electrical conductivity, thermoelectric transport and optical absorption processes. They have potential applications in polarization sensitive photodetectors, polarization ultrafast lasers, polarization field effect transistors and polarization sensors. Among them, BP-based PSPDs have the highest photocurrent anisotropy ratio of 0.59, benefitting from its high carrier mobility and the strong in-plane anisotropy coming from the low-symmetry puckered honeycomb crystal structure. But BP-based optoelectronic devices are hard to get rid of the ambient degradation problem. 2D layered indium selenide (InSe), which also has high carrier mobility and is more stable than BP in atmospheric environment, exhibit huge potential application in high performance optoelectronic and electronic devices. In addition, the anisotropic optical and electronic properties of 2D layered InSe have already been demonstrated in 2019. Worth noting that InSe crystal has three specific polytypes, which are in β, γ, and ε phases, respectively. Among them, InSe in γ-phase and ε-phase belong to symmetry groups. Only the InSe in β-phase (β-InSe) belongs to the nonsymmetry point group, indicating that β-InSe exhibits better anisotropic optoelectronic properties than the other two polytypes.

In order to achieve high performance PSPDs with good stability, the advanced optoelectronic devices research team led by Professor Han Zhang from the Shenzhen University prepare the stable p-type 2D layered β-InSe via temperature gradient method. The anisotropic nature of the β-InSe has been revealed by angle-resolved Raman. The intensity of the out-of-plane and in-plane vibrational modes exhibit pronounced periodic variations with the polarization angle of the excitations. Besides, a good stability of β-InSe flakes and their FET devices has been proved by long-time AFM measurement and multi-repeat electrical performance test. The experimental results (a-b) are in good agreement with the theoretical calculations (c-d) that there are strong anisotropic transport and polarization-sensitive photoresponse in 2D layered β-InSe flakes. The photocurrent anisotropic ratio of the β-InSe photodetector reaches 0.70, which is ranking high among the single 2D material based PSPDs. The strong anisotropic Raman, transport and photoresponse properties of the β-InSe enable its great application potential in filter-free polarization sensitive photodetectors.

###

This research received funding from the National Key Research and Development Project, the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars, the Innovation Team Project of Department of Education of Guangdong Province, the Science and Technology Innovation Commission of Shenzhen, and the Scientific Research Fund of Jilin Provincial Education Department.

See the article:

Zhinan Guo, Rui Cao, Huide Wang, Xi Zhang, Fanxu Meng, Xue Chen, Siyan Gao, David K Sang, Thi Huong Nguyen, Anh Tuan Duong, Jinlai Zhao, Yu-Jia Zeng, Sunglae Cho, Bing Zhao, Ping-Heng Tan, Han Zhang, Dianyuan Fan

High performance polarization sensitive photodetectors on two-dimensional β-InSe

Natl Sci Rev nwab098

https://doi.org/10.1093/nsr/nwab098

Media Contact
Han Zhang
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwab098

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwab098

Tags: Chemistry/Physics/Materials Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

UH Researchers Shatter Thermal Conductivity Limits with Breakthrough in Boron Arsenide

October 21, 2025
blank

BESSY II Unveils Phosphorus Chains: A One-Dimensional Material Exhibiting Unique 1D Electronic Behavior

October 21, 2025

Sustainable Photocatalysis Powered by Red Light and Recyclable Catalysts

October 21, 2025

Compact Chaos-Enhanced Spectrometer Revolutionizes Precision Analysis

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    139 shares
    Share 56 Tweet 35
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Food Insecurity Among Harvard Medical Students

High-Fat Diet Disrupts Blood-Testis Barrier Mechanism

Can AI Transform Ambulatory Anesthesia Practices?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.