• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

High-intensity light promotes anthocyanin accumulation in rough bluegrass

Bioengineer by Bioengineer
December 27, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLUMBUS, OH – Anthocyanins, plant pigments known for their health-promoting properties, are in demand for medicinal and industrial uses. Anthocyanins have become sought-after natural products, but the small number of plants that naturally produce anthocyanins has limited their widespread use. Researchers at The Ohio State University say the results of their recent study (HortScience, September 2106) can help to increase the environmental and economic sustainability of anthocyanin extract production in turfgrasses such as rough bluegrass.

Scientists Dominic Petrella, James Metzger, Joshua Blakeslee, Edward Nangle, and David Gardner said that nonconventional plants such as turfgrasses may be one way to meet the increasing demand for anthocyanins. "The anatomy and perennial nature of turfgrasses make them attractive anthocyanin production systems," explained corresponding author Dominic Petrella. "Rough bluegrass (Poa trivialis L.) is an attractive anthocyanin production system, since leaf tissue can be harvested while preserving meristematic tissues that allow new leaves to rapidly grow, thereby allowing multiple harvests in a single growing season and greater anthocyanin yields."

Light experiments were designed to determine conditions that favor anthocyanin synthesis in rough bluegrass. The scientists first evaluated whether treatment with high-intensity light could increase anthocyanin content, and then determined the wavelength(s) of light capable of upregulating anthocyanin synthesis to optimize light conditions. They also investigated the role of photosynthesis on anthocyanin production.

When exposed to constant high-intensity white light, rough bluegrass plants significantly increased anthocyanin concentration compared to untreated plants. Light-treated plants exhibited an average 117.64-fold increase in anthocyanin content, and accumulated anthocyanins in both leaf blades and sheath tissue. "Our data show that the anthocyanin content of rough bluegrass after high-light treatment is comparable to or greater than many common fruits and vegetables, particularly red leaf lettuce, and consists of the same anthocyanins," Petrella noted.

To determine the primary wavelength(s) of light responsible for upregulating anthocyanin synthesis, dark-grown and light-grown rough bluegrass seedlings were exposed to blue, red, and far-red LED light. Blue light, at intensities between 150 and 250 mmol·m-2·s-1, was the only wavelength that increased anthocyanin content. However, when red light was applied with blue light at 30% or 50% of the total light intensity, anthocyanin content was increased compared with blue light alone.

The authors said that a major advantage of using turfgrass for anthocyanin production is the ability to harvest leaves containing anthocyanin numerous times throughout a single growing season. Results from their first experiment showed that rough bluegrass plants maintain the ability to synthesize large quantities of anthocyanin over time, even after aggressive harvesting.

Further analyses showed that the use of turfgrasses over an entire growing season could potentially increase anthocyanin yield by two-fold over currently used plant sources. "These methods may help increase both the environmental and economic sustainability of anthocyanin extract production," the authors s

###

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/51/9/1111.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Media Contact

Michael W. Neff
[email protected]
703-836-4606
@ASHS_Hort

http://www.ashs.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Borosilicate Glass Enhances Magnetic Hyperthermia Against Bone Tumors

August 28, 2025
Penn Engineers Transmit Quantum Signals Using Standard Internet Protocol

Penn Engineers Transmit Quantum Signals Using Standard Internet Protocol

August 28, 2025

Gastrointestinal Effects of Incretin Obesity Drugs Explored

August 28, 2025

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Borosilicate Glass Enhances Magnetic Hyperthermia Against Bone Tumors

Penn Engineers Transmit Quantum Signals Using Standard Internet Protocol

Gastrointestinal Effects of Incretin Obesity Drugs Explored

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.