• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

High-def mapping of moisture in the soil

Bioengineer by Bioengineer
December 17, 2019
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New method enhances predictions, even in areas where no data has been available

IMAGE

Credit: University of Delaware/ Kathy F. Atkinson


Soil moisture is easy to see when your favorite Little Leaguer slides into second base the day after a big summer storm. The mud splattered on that little hustler’s uniform tells the story.

Trying to gauge soil moisture across large areas — regions, nations, continents — is a whole ‘nother challenge, and a critical one. Knowledge of this dimension of our ecosystem is extremely important for farmers, planners, scientists, insurance companies and anyone concerned about preparing for global environmental change.

“Understanding these patterns is critical to national and international security,” said Rodrigo Vargas, associate professor of ecosystem ecology and environmental change in the Department of Plant and Soil Sciences at the University of Delaware. “We cannot measure everything everywhere all the time…. So we are using alternative approaches, such as machine learning that helps us get insight from complex sets of data.”

Now Vargas and doctoral student Mario Guevara have developed a new approach that sharpens our ability to predict soil moisture, even in large areas where no data have been available. Compared to standard estimates produced by satellite-based sensors, the new approach increases the accuracy of these estimates by more than 20 percent. It also makes it possible to predict soil moisture conditions in much smaller areas and in greater detail than standard models have been able to show. They described their work in a recent issue of PLOS ONE, a peer-reviewed journal published by the Public Library of Science.

The best data on soil moisture now is collected using satellite-based sensors that deliver predictions in grids of about 27 kilometers per pixel. That’s a space almost 17 miles square, about the distance from Main Street in Newark, Delaware, to historic New Castle on the Delaware River.

That’s helpful for analyzing regional or global patterns, but such a large scale can provide only limited information on local conditions.

The method Guevara and Vargas have developed provides much higher definition, improving resolution from 27 kilometers to 1 kilometer per pixel — or from about 17 miles to just over half a mile. That’s roughly the distance from UD’s Trabant Student Center on one end of East Main Street to the Newark Shopping Center on the other. Much tighter and much more useful for statewide applications.

The new approach combines data science and machine learning with the emerging science of geomorphometry — quantitative analysis of land surface using topographic information, image analysis and spatial statistics.

Because soil moisture varies by location and changes over time, reliable measurement and predictive methods are essential. Topography — defining the physical parameters of the Earth’s surface — is a critical factor for soil moisture estimates. Elevation, slope and other land-surface characteristics are strong predictors of how water — from rain, irrigation and other sources — will move, drain and affect an area.

“We need to understand water dynamics,” Guevara said. “We understand a lot of components of the water cycle, but there is a lot we don’t know. We want to protect water resources and know how they are distributed, their geography. Soil moisture is an important indicator of water resources.”

Using satellite-based sensors, soil moisture can be measured to a depth of about 5 centimeters (just under 2 inches).

“Satellites cannot easily see soil moisture at deeper soil layers,” Guevara said.

But that thin layer of soil holds crucial information.

“Superficial soil moisture is a key indicator of soil dryness. It influences soil productivity and ultimately soil health,” Guevara said, “as the water in the first few centimeters of soil is some of the water used by crops or by the soil biodiversity (cycling nutrients) controlling the capacity of soil to produce food, fiber and store water.”

In developing the new predictive model, Guevara used satellite data on soil moisture gathered for more than a decade (1991-2016) across the continental United States by the European Space Agency’s Climate Change Initiative.

He and Vargas worked in collaboration with UD Information Technologies, used the muscle of UD’s Farber high-performance computing cluster and drew upon the resources of the new Data Science Institute.

Guevara developed prediction factors using automated digital terrain analysis and defined 15 types of terrain parameters (such as slope and aspect, among others). He analyzed spatial structure and distribution of these parameters in relation to soil moisture and used an algorithm to select the best models.

The resulting predictions were validated by comparison to “ground truth,” field data on soil moisture from the North American Soil Moisture Dataset. This dataset, developed by UD alum Steven Quiring, who was a doctoral student of UD Professor and State Climatologist Dan Leathers, draws strictly curated data from more than 2,000 meteorological stations across the continental United States.

The next chapter of the research is extending the work to the global scale, Vargas said. More discussion on that is available in the journal Earth System Science Data.

###

The work is supported by a grant from the National Science Foundation and was done in collaboration with Michela Taufer, former professor of computer and information science at UD who now is at the University of Tennessee in Knoxville.

Media Contact
Peter Bothum
[email protected]
302-766-5103

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0219639

Tags: BiologyEarth ScienceGeology/SoilPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Magnolia’s Role in Combating Metabolic Syndrome

September 23, 2025
blank

Forecasting Cell Population Evolution Using a New Scaling Law

September 23, 2025

Genome-Resolved Metagenomics Uncovers Microbiome Diversity in Ticks

September 23, 2025

Unlocking Functional NLRs via Expression and Phenotyping

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering Hidden Harmonic Dynamics in Generalized Snell’s Law: Unlocking Full-Channel Behavior of Gradient Metasurfaces

FAU Engineers Innovate Advanced AI Solutions to Enhance Control in Complex Systems

Study Reveals Impact of Air Pollution on Children’s Vision

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.