• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Here’s how insects coax plants into making galls

Bioengineer by Bioengineer
March 2, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: David Stern

Insects can reprogram plant growth, transforming ordinary plant parts into intricately patterned shelters that are safe havens for feeding and reproduction.

These structures, called galls, have fascinated biologists for centuries. They’re crafted by a variety of insects, including some species of aphids, mites, and wasps. And they take on innumerable forms, each specific in shape and size to the insect species that’s created it – from knobs to cone-shaped protrusions to long, thin spikes. Some even resemble flowers.

Insects create galls by manipulating the development of plants, but figuring out exactly how they perform this feat “feels like one of the great unsolved problems in biology,” says David Stern, a group leader at the Howard Hughes Medical Institute’s Janelia Research Campus. “How does an organism of one kingdom take control of the genome of an organism in another kingdom to completely reorganize its development, to produce a home for itself?”

Now, Stern and his colleagues have identified the first examples of insect genes that directly guide gall development. These genes are turned on in aphids’ salivary glands and appear to direct gall formation when the insects spit their saliva into the plants. One gene the team identified determines whether such galls will be red or green, the researchers report in a paper published March 2 in Current Biology.

“I think they’ve discovered essentially new territory,” says Patrick Abbot, a molecular ecologist at Vanderbilt University who wasn’t involved in the work. There’s a strong likelihood that similar genes are found in other insects, he says. “It makes me want to run to the lab and start looking back through my data.”

Figuring out how to study gall formation has been a longstanding challenge, Stern says – one that’s interested him since he was a graduate student doing fieldwork in Malaysia. Gall-making insects aren’t laboratory model organisms like fruit flies, and not as much is known about their genetics.

A few years ago, while wandering the woods of Janelia’s riverside campus, Stern made a convenient observation. Hormaphis cornu aphids make galls on witch hazel trees, small flowering trees that are abundant on campus. Even on a single leaf, Stern noticed, some Hormaphis aphids were making green galls, while others were making red ones. It set up a natural experiment – a chance to compare two visibly distinct kinds of galls and figure out what’s genetically different between the aphids that make them.

When Stern and his team sequenced the genomes of aphids that made green galls and those that made red galls, they pinpointed a gene that varied between the two genomes. Aphids with one version of a gene that they named “determinant of gall color” made green galls; aphids with a different version made red ones. The finding piqued their curiosity, as the gene didn’t look like any previously identified genes.

To dive deeper, they collected aphids from both witch hazel trees and river birch trees. (Hormaphis cornu aphids live on river birch trees in the summer, but don’t make galls there.) Back in the lab, the researchers carefully dissected out the insects’ tiny salivary glands. In these glands, the team hunted for genes that were turned on only in the aphids that made galls. The researchers found that the gene determinant of gall color was similar to hundreds of other genes that were all turned on specifically in the gall forming aphids. Stern’s team dubbed this group bicycle genes.

The gall-making aphids on the witch hazel trees switch on these genes to make BICYCLE proteins. The insects might spit these proteins into plant cells to reprogram leaf tissue into making a gall instead of normal plant parts, says Aishwarya Korgaonkar, a research scientist in the Stern lab who helped lead the project.

The team is now working to identify the plant molecules targeted by the aphids’ BICYCLE proteins, says Korgaonkar. That could help them understand just how BICYCLE proteins goad plants into forming galls.

“After years of wondering what’s going on, it’s very rewarding to have something to show for it,” Stern says.

###

Citation

Aishwarya Korgaonkar, Clair Han, Andrew L. Lemire, Igor Siwanowicz, Djawed Bennouna, Rachel Kopec, Peter Andolfatto, Shuji Shigenobu, and David L. Stern. “A novel family of secreted insect proteins linked to plant gall development.” Current Biology. Published online March 2, 2021. Doi: 10.1016/j.cub.2021.01.104

Media Contact
Laurel Hamers
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2021.01.104

Tags: BiologyEcology/EnvironmentEntomologyEvolutionGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Two Prestigious Grants Empower Young Investigator to Advance Blood Cancer Research

Two Prestigious Grants Empower Young Investigator to Advance Blood Cancer Research

August 18, 2025
SwRI Study Validates Long-Standing Theoretical Models of Solar Reconnection

SwRI Study Validates Long-Standing Theoretical Models of Solar Reconnection

August 18, 2025

Revolutionary Self-Powered Patch Monitors Biomarkers Non-Invasively, Eliminating the Need for Blood Draws

August 18, 2025

Satellite Imagery-Based Models Empower Chickpea Farmers in the Field

August 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Two Prestigious Grants Empower Young Investigator to Advance Blood Cancer Research

SwRI Study Validates Long-Standing Theoretical Models of Solar Reconnection

Revolutionary Self-Powered Patch Monitors Biomarkers Non-Invasively, Eliminating the Need for Blood Draws

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.