• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Heredity matters: Ancestral protease functions as protein import motor in chloroplasts

Bioengineer by Bioengineer
October 22, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka, Japan — Over 1 billion years ago, a relationship began between the ancestor of all living plants and a type of bacterium that paved the way for the evolution of life as we know it. The single-celled algal ancestor engulfed, but crucially did not destroy, a cyanobacterium-like organism with which it established a mutually beneficial bond. This symbiotic relationship provided energy in the form of sugars derived from photosynthesis (whereby sunlight is converted into chemical energy) from the cyanobacterium to its host.

The symbiont cell eventually became the first chloroplast. Even today, these organelles hold on to structures from their early days as independent organisms, including their own DNA and a double membrane. During evolution, several chloroplast-encoded genes transferred to the host's nuclear genome. Thus, in modern plant and algal cells, many nuclear-encoded chloroplast proteins synthesized in the cytosol of the cell must be imported across both the outer and inner chloroplast membranes in a process that requires energy.

In 2013, Osaka University researchers headed by Masato Nakai discovered and characterized a huge novel transport channel (TIC) in the inner chloroplast membrane through which proteins were transported (Science, 339, 571–574.) However, the motor that enables proteins to be imported across the inner membrane remained a mystery.

Now, in The Plant Cell, this same team has collaborated with other Japanese researchers to report the identification of the elusive protein transport motor that is essential for chloroplast formation.

"We identified another huge novel protein complex, twice the mass of TIC, which is made up of six related proteins with one accessory protein, and functions as the import motor in a close association with TIC," says Nakai. "Surprisingly, the six related components all evolved from an enzyme contained within the ancestral cyanobacterium-like endosymbiont that degraded unwanted proteins after extracting them from the membrane."

Although the protein breakdown role has since been lost during evolution, the extraction function has been retained to be utilized as an import motor. The team believes that simultaneous increases in the size of components of TIC and the newly identified motor occurred early in the evolution of the green algae, perhaps to improve protein import efficiency.

"These findings revolutionize the molecular model of chloroplast protein import, and help us understand the evolution of plant and algal chloroplasts," explains Nakai. "This understanding could aid biotechnological improvements in the efficiency of crop photosynthesis, or the development of plants and algae as factories that manufacture or store proteins in their chloroplasts."

###

This article, "A Ycf2-FtsHi heteromeric AAA-ATPase complex is required for chloroplast protein import" was published in The Plant Cell at DOI: https://doi.org/10.1105/tpc.18.00357.

A 2013 article related to this research was published in Science at DOI: https://doi.org/10.1126/science.1229262.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

https://resou.osaka-u.ac.jp/en/research/2018/20181012_1 http://dx.doi.org/10.1105/tpc.18.00357

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

November 1, 2025
Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

October 31, 2025

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025

Sheathed Flagellum Structures Explain Vibrio cholerae Motility

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Patient Perspectives on Autism Diagnosis

Unlocking Metal Recovery from Manganese Residues

Barriers and Boosts to Person-Centered Nursing Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.