• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 17, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Herbivory and climate change factors may significantly increase BVOC emissions from boreal conifers

Bioengineer by Bioengineer
November 7, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Boreal conifer forests are sources of biogenic volatile organic compound (BVOC) emissions into the atmosphere. Global warming exposes boreal trees to biotic stress caused by insect outbreaks and they are also affected by abiotic climate change factors.

A recent study from the University of Eastern Finland shows that the combination of insect outbreaks and climate change factors may significantly increase BVOC emissions of conifers in northern Europe. The expected increases in BVOCs may affect atmospheric chemistry and the global climate through the formation of secondary organic aerosols in the atmosphere.

Needle damage caused by pine sawflies on Scots pine and bark beetle invasion on Norway spruce trunks substantially increased the BVOC emissions from pine shoots and spruce bark, respectively. Insect herbivores and abiotic climate change factors (warming, elevated ozone and increased soil nitrogen availability), both individually and in combination, had strong impacts on BVOC emissions of Scots pine.

The findings presented in the doctoral dissertation of Rajendra Prasad Ghimire, MSc, help in understanding the risks posed by climate change induced insect outbreaks for northern ecosystems. Data on emission responses can be used in, for example, modelling of the impacts of climate change on the secondary aerosol forming capacity of boreal forests.

With the aim of assessing BVOC emissions from the shoots and tree bark surface of conifers in response to biotic stress, pine seedlings were experimentally exposed to insect herbivores in growth chambers and in an open-field exposure site. In addition, naturally insect-infested spruce trees were studied in forest site experiments.

In order to evaluate the emission responses under multiple biotic and abiotic factors, pine seedlings were exposed to herbivory, warming, elevated ozone and higher nitrogen supply in the open-field exposure site. BVOC samples were collected both from pine shoots and rhizosphere and spruce bark surface using dynamic headspace sampling technique followed by analysis with gas chromatography-mass spectrometry.

The findings were originally published in Environmental Science and Technology, Atmospheric Environment, and European Journal of Forest Research.

###

The doctoral dissertation, entitled Effects of Herbivory and Climate Change Factors on BVOC Emissions from Boreal Conifers, is available for download at http://epublications.uef.fi/pub/urn_isbn_978-952-61-2252-6/urn_isbn_978-952-61-2252-6.pdf

For further information, please contact: Early Stage Researcher Rajendra Prasad Ghimire, tel. +358403553806, email: [email protected]

Media Contact

Rajendra Prasad Ghimire
[email protected]
358-403-553-806
@UniEastFinland

http://www.uef.fi

Share12Tweet8Share2ShareShareShare2

Related Posts

Energy-Smart Scheduling Boosts Multi-Robot Mission Efficiency

January 17, 2026
Optimized Dimensioning for Heavy-Duty Fuel Cell Trucks

Optimized Dimensioning for Heavy-Duty Fuel Cell Trucks

January 17, 2026

Predicting Lift-to-Drag Ratio in Multi-Stepped Airfoils

January 17, 2026

Integrated Care Pathway Boosts Fragility Fracture Prevention

January 17, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Energy-Smart Scheduling Boosts Multi-Robot Mission Efficiency

Optimized Dimensioning for Heavy-Duty Fuel Cell Trucks

Predicting Lift-to-Drag Ratio in Multi-Stepped Airfoils

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.