• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Helium, a little atom for big physics

Bioengineer by Bioengineer
September 28, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Authors

Helium atom precision measurements and calculations have a history of nearly a century. In the 1960s, theorists discovered that the fine-structure split (23P0-23P2) of the 23P energy level of helium is the best atomic system for measuring the fine structure constant α (approximately 1/137), which is the key parameter in the Quantum Electrodynamics (QED) theory. QED is the basic theory describing the quantum properties of electromagnetic interactions. It covers almost all physical systems from microscopic particles to macroscopic solids, and is currently the most accurate theory in physics. Such a measurement of α from precision spectroscopy of helium, compared with values determined from totally different methods, presents a perfect test of the consistency of physics. After 50 years of hard work, theorists have develoed different approaches to calculate the QED correction of helium to the 7th power series of α.

Experimental precision measurements of helium atoms have been carried out in many international research institutions. Recent experimental progresses obtained in several groups worldwide are introduced, including the 2S-2P transition frequency of He-4 and the 23P0-23P2 fine structure interval determined by the authors’ research group, which are the most accurate results to date.

At present, the accuracy of calculated results of helium is limited by the very complicated QED correction of the 8th order of α. On the one hand, it may be developed through theoretical development, and on the other hand, it may be explored through precision measurements of other helium-like ions. This will be an extremely strict test of QED.

In addition, precision measurement of helium also has a broad impact to various important studies.

Spectroscopy of the helium atom has been applied to determine the radius of helium nuclei. At present, there is still a significant deviation between the measured results of the difference between the nuclear radius of helium-3 and helium-4. The reason for this deviation has not been explained, and the solution of this problem will provide an important reference to solve the “puzzle of proton radius”.

The polarizability of helium atoms can be accurately calculated and the refractive index of helium gas can be derived. Since the refractive index of a gas can be precisely measured by optical methods, this becomes a metrology method for optically determining the density (pressure) of gases. Related technical methods are developing at NIST in the United States and at PTB in Germany, and the authors’ research team has also undertaken related research.

###

See the article:

Precision Spectroscopy of Atomic Helium
https://doi.org/10.1093/nsr/nwaa216

Media Contact
S.-M. Hu
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa216

Tags: Atomic PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.