• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Hedging strategy for coral restoration balances diversity, ecosystem benefits

Bioengineer by Bioengineer
July 3, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Resource managers and conservationists have been offered an innovative, new approach to selecting coral species for reef restoration. An international team of scientists worked together to develop this approach during a workshop organized by the University of Melbourne (U Melbourne) and the Australian Institute of Marine Science (AIMS). In a study published today in the Journal of Applied Ecology, this international team of scientists, led by a University of Hawai‘i (UH) at Mānoa researcher, revealed a strategy for choosing a set of key coral species that will best maintain ecosystem functions critical for reef health.

Graphical abstract of the study

Credit: Madin, et al. (2023)

Resource managers and conservationists have been offered an innovative, new approach to selecting coral species for reef restoration. An international team of scientists worked together to develop this approach during a workshop organized by the University of Melbourne (U Melbourne) and the Australian Institute of Marine Science (AIMS). In a study published today in the Journal of Applied Ecology, this international team of scientists, led by a University of Hawai‘i (UH) at Mānoa researcher, revealed a strategy for choosing a set of key coral species that will best maintain ecosystem functions critical for reef health.

Coral reefs worldwide are rapidly disappearing due to a number of anthropogenic disturbances, with global warming being the biggest threat. In response, coral reef restoration is a growing research field and industry. Most coral reefs comprise tens to hundreds of stony coral species, yet resources for coral reef restoration are insufficient to restore them all. Methods for selecting species that will best maintain species diversity and ecosystem function are currently unavailable.

“The ecosystem services that coral reefs provide for people, such as coastal protection and fisheries, depend upon coral species with a broad range of what are called life history strategies, for example slow to fast growing, mounding to branching shapes, and under to upper storey,” said Joshua Madin, study lead author and research professor at the Hawai‘i Institute of Marine Biology in the UH Mānoa School of Ocean and Earth Science and Technology (SOEST). “Therefore, restoration practitioners need to consider this range of local species when restoring coral reefs—much like forest restoration requires more than just fast-growing plants.”

The research team combined databases of coral species traits with their ecological characteristics, including their resistance to thermal bleaching, to see how best to select sets of species for restoration using a hedging approach, much like that used for investment portfolios.  

“Selection based on ecological characteristics is important for hedging against future species loss, whereas trait diversity is important for hedging against the loss of certain ecosystem services, reef-building groups, life history categories, and evolutionary variety,” said Madin.

This hedging approach provides a simple framework for aiding restoration practitioners in selecting target species for their projects, depending on spatial scale and resources.

“For example, if a program only has funds to focus on 20 coral species, they would want to focus on the sets of species to get the most ecosystem bang for their buck,” said Professor Madeleine van Oppen from U Melbourne and AIMS, who is the senior author on the paper. “Current coral restoration programs tend to focus on easy to collect, “weedy” coral species, which have similar characteristics and cannot support ecosystem services on their own.”

The study also found that, if species data are limited, selecting species at random is much better than selecting species that are easy to collect. The extra effort required will pay off in terms of preserving ecosystem services that communities rely on. The method can be applied to any coral reef for which coral trait data are available.     

As coral reefs face greater risks, including in Hawai’i and Australia, where people depend on reefs for tourism, recreation, coastal protection, and sustenance, coral restoration is the focus of much research and development. The new approach to selecting coral species is already being applied to a hybrid reef program in Hawai’i funded by the Defense Advanced Research Projects Agency. The goal of that ground-breaking project is to create an engineered structure that provides habitat for corals and other reef life while protecting coastlines from flooding, erosion and storm damage.



Journal

Journal of Applied Ecology

DOI

10.1111/1365-2664.14447

Method of Research

Data/statistical analysis

Subject of Research

Animals

Article Title

Selecting coral species for reef restoration

Article Publication Date

3-Jul-2023

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

Liver Kinase B1 Shields Endothelial Cells from Hypoxia

August 30, 2025

Revolutionizing Drug-Target Affinity with 3D Protein Insights

August 30, 2025

Gendered Foraging Strategies of Little Auks Revealed

August 30, 2025

Studying Social Interactions: Baleen Whales and Dolphins

August 30, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Femoral Oxygen Levels to Predict Lung Injury

From GH Deficiency to Combined Hormone Deficiency in Pediatrics

Case Study: Hypoglycemia Post-Gastric Bypass with Sacubitril/Valsartan

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.