• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Heat and irradiation: New approach for more selectively fighting…

Bioengineer.org by Bioengineer.org
January 27, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Fraunhofer MEVIS

Researchers wish to treat tumors more effectively in the future by combining radiation therapy and focused ultrasound. The joint project SONO-RAY began on October 1st, 2016. The project is part of Leipzig University's Innovation Center for Computer-Assisted Surgery (ICCAS) as well as OncoRay – National Center for Radiation Research in Oncology, located in Dresden. Approximately six million Euros have been granted by the German Federal Ministry of Education and Research to fund the project.

Radiation therapy is particularly effective if the tumor tissue is well-supplied with blood and oxygen. Tumors, however, are often poorly supplied with blood and may harbor large areas of radioresistant tumor tissue that lack oxygen. "We can selectively warm up these areas so that blood supply improves and the radiation therapy can work more effectively," says Prof. Andreas Melzer, outlining one of the aims of the unique research project. Melzer is project leader of SONO-RAY and director of the ICCAS in Leipzig. "SONO-RAY links the knowledge of ultrasound treatment in Leipzig with the research of Dresden on radiation therapy. This means we can comprehensively study the innovative combined method and open up new opportunities in cancer therapies," says radiation therapy expert Prof. Mechthild Krause, director of OncoRay and project leader of SONO-RAY for the Dresden team. In addition to radiosensitizing effects at relatively low temperatures, higher temperatures can even be used to kill tumor cells directly.

Proven treatments combined anew

The two procedures – radiation therapy and focused ultrasound – are already utilized separately in tumor treatment. Combining both forms of therapy is a novel approach that has yet to be fundamentally studied in depth. "Using focused ultrasound, we are capable of warming certain areas within the body. Radiation therapy is also a localized and very precise form of therapy," explains Prof. Andreas Melzer. "By combining both treatment methods, we hope to destroy more tumor cells or to be able to achieve the same result with lower doses of radiation," says Prof. Mechthild Krause, indicating the advantages of the new method.

Targeting heat more precisely

When heating certain areas of the body using standard methods, known as hyperthermia, the distribution of temperature in the treated anatomical region is often heterogeneous and not precisely defined, so that the effects on tumors and healthy tissue are difficult to predict. Using focused ultrasound – a specialized form of hyperthermia – the sound is amplified to a certain degree and focused on a spot so that only the tissue in that area is heated. The temperature can thus be distributed so that healthy cells can still withstand the treatment while the actual tumor cells are damaged. The heat treatment can be precisely planned and monitored through magnetic resonance imaging (MRI) within the framework of the project.

Radiation and heat therapies are expected to mutually strengthen anticancer effects

In addition to surgery and systemic therapy, radiation therapy is one of the main pillars of cancer treatment today. It causes structural changes in the genetic material, whereby the tumor cells lose their ability to devide and eventually die. Radiation therapy enables localized treatment of tumors at any location in the body. It is possible to selectively treat tumors with high doses by using modern, image-guided precision radiation technologies, including particle therapy, for example with protons. At the same time, the surrounding healthy tissue is largely protected from permanent damage. The doses which can be applied without a too high risk of damage to normal tissues, however, are not always sufficient to destroy the tumor.

The SONO-RAY scientists in Dresden and Leipzig expect that, by combining heat and radiation treatment, the therapeutic effect of both procedures will be increased. They wish to first investigate the innovative combined therapy in the laboratory. The method is also to be tested clinically in approximately three years.

Both OncoRay as well as ICCAS are part of the "Centers for Innovation Competence" (ZIK), which are supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the "Entrepreneurial Regions" initiative, which aims to advance cutting-edge research in the new East German states. Both centers comprise the SONO-RAY project and form one meta-ZIK. The ICCAS belongs to the Leipzig University's Department of Medicine. OncoRay – National Center for Radiation Research in Oncology — is a collaboration of the Carl Gustav Carus University Hospital Dresden, the Faculty of Medicine at the Technische Universität Dresden and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The SONO-RAY project duration is three years and approximately six million Euros have been granted by the German Federal Ministry of Education and Research to fund the project.

###

Media Contact

Christine Bohnet
[email protected]
49-351-260-2450
@HZDR_Dresden

http://www.hzdr.de/db/Cms?pNid=0

Share12Tweet7Share2ShareShareShare1

Related Posts

Mechanical Confinement Shapes Melanoma Plasticity

August 27, 2025

Impact of Low Blood Pressure Dipping on Pediatric CKD

August 27, 2025

Optimal Flow Rate for Thoracoabdominal Aortic Surgery

August 27, 2025

High SERPINE2 Levels Signal Kidney Issues in Diabetes

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mechanical Confinement Shapes Melanoma Plasticity

Impact of Low Blood Pressure Dipping on Pediatric CKD

Optimal Flow Rate for Thoracoabdominal Aortic Surgery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.