• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Healthy teeth thanks to the “washing machine effect”

Bioengineer by Bioengineer
May 12, 2023
in Biology
Reading Time: 3 mins read
0
Healthy teeth thanks to the "washing machine effect”
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ruminants like cows have developed an unusual way of digesting their food: they ingest plants, give them a rough chewing and then swallow the half-chewed mash before regurgitating it repeatedly and continuing to chew. This has clear advantages, as a research team including the University of Göttingen has shown: the regurgitated mushy food contains much less hard grit, sand and dust than the food that they first ingested. This protects the teeth from being ground down during the chewing process. This may explain why the crowns of the teeth of ruminants are less pronounced than those of other herbivores. The findings have been published in the journal Proceedings of the National Academy of Science (PNAS).

Although cows ingest plenty of sand and other bits of grit with their grass, their teeth are protected from being ground-down thanks to the way their first stomach"washes" their cud before they re-chew it.

Credit: Jürgen Hummel

Ruminants like cows have developed an unusual way of digesting their food: they ingest plants, give them a rough chewing and then swallow the half-chewed mash before regurgitating it repeatedly and continuing to chew. This has clear advantages, as a research team including the University of Göttingen has shown: the regurgitated mushy food contains much less hard grit, sand and dust than the food that they first ingested. This protects the teeth from being ground down during the chewing process. This may explain why the crowns of the teeth of ruminants are less pronounced than those of other herbivores. The findings have been published in the journal Proceedings of the National Academy of Science (PNAS).

 

The researchers fed four cows grass feed mixed with sand for several days and took samples of the regurgitated food pulp and faeces. They then measured the silicate content of each sample. The compounds from sand and grass are particularly abrasive to teeth because of their hardness. The faeces contained about the same amount of silicates as the grass feed mixed with sand, whereas the regurgitated food contained significantly less. The only explanation is that the silicates must have stayed in the stomach, or more precisely in the “rumen”. The rumen is the largest stomach compartment in ruminants and the place where food is fermented and broken down by microorganisms.

 

Because this laborious chewing is partly carried out on food pulp that has been “washed” in the rumen, the teeth of ruminants are less worn than those of horses, for example. The latter chew their food completely after ingestion, including the abrasive bits. For the researchers, this observation makes sense because the teeth of ruminants have comparatively low crowns. The method of digestion means the teeth remain functional for longer. It explains the distinctive shape of ruminant’s teeth: there has been no evolutionary pressure to form more tooth material.

 

“Our research explains a fundamental but little-studied aspect of food grinding in large herbivores, which contributes to the understanding of the function and evolution of teeth,” explains Professor Jürgen Hummel, the University of Göttingen’s Ruminant Nutrition Group. In addition to understanding the physiology of digestion, the result is interesting for palaeontology: teeth are well preserved as fossils and often provide the most important clues in reconstructing early herbivores and their environment.

 

Original publication: Valerio et al. (2022): The Ruminant sorting mechanism protects teeth from abrasives. PNAS 2022, DOI: 10.1073/pnas.2212447119  

 

A commentary in PNAS refers to the results and discusses the topic further: Sanson GD (2023): Reassessing assumptions about the evolution of herbivore teeth. PNAS 2023, DOI: 10.1073/pnas.2219060120

 

Contact:

Professor Jürgen Hummel

University of Göttingen

Ruminant Nutrition Group

Kellnerweg 6, 37077 Göttingen, Germany

Tel: +49 (0551) 39-23359

Email: [email protected] 

www.uni-goettingen.de/de/492912.html



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2219060120

Method of Research

Observational study

Article Title

The Ruminant sorting mechanism protects teeth from abrasives

Article Publication Date

2-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Blood-Brain Barrier Regulators: Age and Sex Differences

Blood-Brain Barrier Regulators: Age and Sex Differences

October 13, 2025
Activating Sperm Motility: A Breakthrough Offering New Hope for Male Infertility

Activating Sperm Motility: A Breakthrough Offering New Hope for Male Infertility

October 13, 2025

miR-542 Overexpression Halts Cervical Cancer Growth

October 13, 2025

Global Gender Disparities in Alopecia Areata Risk

October 13, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1236 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping mRNA Life Cycle in Intact Cells

Advancements in Alzheimer’s Amyloid-Lowering Immunotherapies

Reevaluating Misconceptions: Heart Attacks, Strokes, Stenosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.