• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Healthier dairy products with bacterial films and nanofiber membranes

Bioengineer by Bioengineer
March 6, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bacterial biofilms are typically the target of heavy-duty cleaning regimens, but these films aren’t always bad news. In fact, growing them on thin sheets of nanofibers is a great way to produce a fermented milk product that can deliver hardy probiotics to the digestive tract, according to research just published in ACS’ Journal of Agricultural and Food Chemistry.

Biofilms consist of bacterial cells that are tightly packed together in an extracellular matrix (ECM). Most prior biofilm research has focused on films formed by pathogenic bacteria, and more particularly on how to prevent their formation or how to detach or destroy the films. Meng-Xin Hu and colleagues instead wanted to find the best growing conditions for the useful bacteria Lactobacillus plantarum, found in fermented food products such as yogurt. They were interested in ensuring that this organism could survive storage on the supermarket shelf, as well as transit through the stomach, which remains a challenge for most probiotics.

The researchers grew the bacteria on cellulose acetate membranes that mimic the structure of natural ECM. The huge surface area of these nanofiber membranes provided a scaffold for the bacteria. The microbes successfully formed colonies and then biofilms, which were used to ferment milk, on the membranes. The bacteria in biofilms were more resistant to simulated digestion than free-floating L. plantarum. During fermentation, the biofilms continually released live bacterial cells into the milk. Once the fermented milk was stored, the released cells retained in the milk were much longer-lived than cells in fermented milk produced by free-floating L. plantarum. The researchers say their findings lay the foundation for the use of biofilm-integrated nanofiber membranes as starter cultures in biotechnology and fermentation industries.

###

The authors acknowledge funding from the National Natural Science Foundation of China and Zhejiang Provincial Top Key Discipline of Food Science and Biotechnology.

The paper’s abstract will be available on March 6 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.jafc.8b05024.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: BacteriologyChemistry/Physics/Materials SciencesFood/Food ScienceMetabolism/Metabolic DiseasesMicrobiologyNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Cacna1e Splice Variants’ Functional Diversity

September 28, 2025
Key Genes Uncovered for Banana Blood Disease Resistance

Key Genes Uncovered for Banana Blood Disease Resistance

September 28, 2025

Streptococcus anginosus Found Across Female Urogenital Sites

September 28, 2025

Unlocking Sustainable Lipids from Gongronella butleri

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Cacna1e Splice Variants’ Functional Diversity

Tetraspanins: Key Players in Organ Fibrosis Therapy

Specialized Singing Programs Enhance Symptoms and Quality of Life for Individuals with Lung Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.