• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Healing wounds with cell therapy

Bioengineer by Bioengineer
May 29, 2017
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Montreal, May 29, 2017 – Diabetic patients frequently have lesions on their feet that are very difficult to heal due to poor blood circulation. In cases of serious non-healing infections, a decision to amputate could be made. A new therapeutic approach, presented recently in the Journal of Investigative Dermatology by Canadian researchers affiliated with the University of Montreal Hospital Research Centre (CRCHUM), could prevent these complications by promoting wound healing.

The solution isn't what you might expect, not just another antibiotic ointment or other prescription medication. It's the approach that's different, a way to heal through personalized medicine. "We discovered a way to modify specific white blood cells – the macrophages – and make them capable of accelerating cutaneous healing," explained nephrologist Jean-François Cailhier, a CRCHUM researcher and professor at the University of Montreal.

It has long been known that macrophages play a key role in the normal wound healing process. These white cells specialize in major cellular clean-up processes and are essential for tissue repair; they accelerate healing while maintaining a balance between inflammatory and anti-inflammatory reactions (pro-reparation).

"When a wound doesn't heal, it might be secondary to enhanced inflammation and not enough anti-inflammatory activity," explained Cailhier. "We discovered that macrophage behaviour can be controlled so as to tip the balance toward cell repair by means of a special protein called Milk Fat Globule Epidermal Growth Factor-8, or MFG-E8."

Cailhier's team first showed that when there is a skin lesion, MFG-E8 calls for an anti-inflammatory and pro-reparatory reaction in the macrophages. Without this protein, the lesions heal much more slowly. Then the researchers developed a treatment by adoptive cell transfer in order to amplify the healing process.

Adoptive cell transfer consists in treating the patient using his or her own cells, which are harvested, treated, then re-injected in order to exert their action on an organ. This immunotherapeutic strategy is usually used to treat various types of cancer. This is the first time it has been shown to also be useful in reprogramming cells to facilitate healing of the skin.

"We used stem cells derived from murine bone marrow to obtain macrophages, which we treated ex vivo with the MFG-E8 protein before re-injecting them into the mice, and we quickly noticed an acceleration of healing," said Dr. Patrick Laplante, Cailhier's research assistant and first author of the study.

Added Dr. Cailhier, "the MFG-E8 protein, by acting directly upon macrophages, can generate cells that will orchestrate accelerated cutaneous healing."

The beauty of this therapy is that the patient (in this case the mouse) is not exposed to the protein itself. Indeed, as Dr. Cailhier explained, "if we were to inject the MFG-E8 protein directly into the body there could be effects, distant from the wound, upon all the cells that are sensitive to MFG-E8, which could lead to excess repair of the skin causing aberrant scars named keloids. The major advantage [of this treatment] is that we only administer reprogrammed cells, and we find that they are capable of creating the environment needed to accelerate scar formation. We have indeed discovered the unbelievable potential of the macrophage to make healing possible by simple ex vivo treatment."

What now remains to be done is to test this personalized treatment using human cells. Thereafter, the goal will be to develop a program of human cell therapy for diabetic patients and for victims of severe burns. It will take several years of research before this stage can be reached.

This advanced personalized treatment could also make all the difference in treating cases of challenging wounds. According to the World Health Organization, diabetes affects 8.5% of the global population, and amputation rates of the lower extremities are 10 to 20 times higher in diabetics. "If, with this treatment, we can succeed in closing wounds and promoting healing of diabetic ulcers, we might be able to avoid amputations," Dr. Cailhier said.

"Serious burn victims could also benefit," he added. "By accelerating and streamlining the healing of burns, we may be able to reduce the infections and keloids that unfortunately develop much too often in such patients." Cancer patients requiring extensive reconstruction surgery could also benefit, he said.

###

About this study

The study "MFG-E8 reprogramming of macrophages promotes wound healing by increased bFGF production and fibroblast functions" was published on May 16 in the Journal of Investigative Dermatology. Jean-François Cailhier, a nephrologist and researcher at the University of Montreal Hospital Research Centre (CRCHUM), holds the Claude Bertrand Chair in Neurosurgery of the University of Montreal, and is a professor at the University of Montreal and member of the Institut du cancer de Montréal. The other authors are: Patrick Laplante, Frédéric Brillant-Marquis, Marie-Joëlle Brissette, Benjamin Joannette-Pilon, Romain Cayrol and Victor Kofta. This study was funded by the Institut du cancer de Montréal (ICM). For additional information, we invite you to read the study: DOI: http://dx.doi.org/10.1016/j.jid.2017.04.030

Source: University of Montreal Hospital Research Centre (CRCHUM)

Information:

Isabelle Girard
Information Advisor
CRCHUM
Telephone: +1 514 890-8000 ext. 12725 | @CRCHUM
[email protected]

Media Contact

Isabelle Girard
[email protected]
514-233-6671
@CRCHUM

http://www.chumtl.qc.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Insights into Day Program Treatment for Anorexia Caregivers

September 28, 2025

Key Insights on End-of-Life Communication in Nursing

September 28, 2025

Tetraspanins: Key Players in Organ Fibrosis Therapy

September 28, 2025

Specialized Singing Programs Enhance Symptoms and Quality of Life for Individuals with Lung Disease

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Day Program Treatment for Anorexia Caregivers

Key Insights on End-of-Life Communication in Nursing

Unveiling Cacna1e Splice Variants’ Functional Diversity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.