• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Harvard researchers describe pneumatic actuator that generates cyclical motion

Bioengineer by Bioengineer
July 18, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, July 18, 2017–A new study demonstrated the design, potential applications, and advantages of an innovative multi-chambered soft pneumatic actuator. Researchers described how the actuator generates cyclical motion and characterized its trajectory and the force it exerts in an article published in Soft Robotics, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Soft Robotics website until August 18, 2017.

Coauthors Alar Ainla, Mohit Verma, Dian Yang, and George Whitesides, Harvard University, Cambridge, MA presented two sample applications of the actuator in the article entitled "Soft, Rotating Pneumatic Actuator": delivering fluid through a needle while stirring; and mimicking the gait of a reptile to achieve locomotion. They identified several advantages of this novel method for achieving revolution of a central rod-like unit within a soft pneumatic actuator including no need for lubrication, no risk of bursting at actuation pressures above the operating specifications because it functions under negative pressure, and its ability to be used in operations that are sensitive to electromagnetic fields or use flammable liquids where an unshielded electric motor could cause interference or explosion.

"Working with soft machines presents enormous challenges in design and then in the technical aspects needed to build a working device. This report is an ingenious example of a device that leverages soft materials to operate in environments that would not be suitable for more traditional robots," says Editor-in-Chief Barry A. Trimmer, PhD, who directs the Neuromechanics and Biomimetic Devices Laboratory at Tufts University (Medford, MA).

###

About the Journal

Soft Robotics, a peer-reviewed journal published quarterly online with Open Access options and in print, combines advances in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering to present new approaches to the creation of robotic technology and devices that can undergo dramatic changes in shape and size in order to adapt to various environments. Led by Editor-in-Chief Barry A. Trimmer, PhD, and a distinguished team of Associate Editors, the Journal provides the latest research and developments on topics such as soft material creation, characterization, and modeling; flexible and degradable electronics; soft actuators and sensors; control and simulation of highly deformable structures; biomechanics and control of soft animals and tissues; biohybrid devices and living machines; and design and fabrication of conformable machines. Tables of content and a sample issue can be viewed on the Soft Robotics website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science, technology, and biomedical research, including 3D Printing and Additive Manufacturing and Tissue Engineering. Its biotechnology trade magazine, Genetic Engineering News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Media Contact

Kathryn Ryan
[email protected]
914-740-2250
@LiebertPub

http://www.liebertpub.com

Original Source

http://www.liebertpub.com/global/pressrelease/harvard-researchers-describe-pneumatic-actuator-that-generates-cyclical-motion-in-soft-robotics/2219/ http://dx.doi.org/10.1089/soro.2017.0017

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Nuclei Isolation Unveils Litopenaeus vannamei Cell Atlas

December 28, 2025
blank

Unlocking Rice Quality: GWAS Sheds Light on Traits

December 28, 2025

Chloroplast Genome of Ecklonia maxima: A Comparative Study

December 27, 2025

Tissue-Specific Gene Expression Variance in Mice

December 27, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements in Road Accident Prediction Models

New Insights on Angiogenesis and Cell Death in Spinal Cord Injury

Assessing Surgical Nurses’ AI Literacy and Readiness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.