• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Harnessing green energy from plants depends on their circadian rhythms

Bioengineer by Bioengineer
May 28, 2024
in Chemistry
Reading Time: 3 mins read
0
Plant hydraulics and the biological process
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, May 28, 2024 —When plants draw water from their roots to nourish their stems and leaves, they produce an electric potential that could be harnessed as a renewable energy source. However, like all living things, plants are subject to a circadian rhythm — the biological clock that runs through day and night cycles and influences biological processes. In plants, this daily cycle includes capturing light energy for photosynthesis and absorbing water and nutrients from the soil during the day and slowing its growth processes at night.

Plant hydraulics and the biological process

Credit: Aniruddha Guha

WASHINGTON, May 28, 2024 —When plants draw water from their roots to nourish their stems and leaves, they produce an electric potential that could be harnessed as a renewable energy source. However, like all living things, plants are subject to a circadian rhythm — the biological clock that runs through day and night cycles and influences biological processes. In plants, this daily cycle includes capturing light energy for photosynthesis and absorbing water and nutrients from the soil during the day and slowing its growth processes at night.

In a study published this week in Physics of Fluids, by AIP Publishing, the researchers from the Indian Institute of Technology Kharagpur detailed how biological processes produce voltage in plants and the impact of the cyclic day and night changes on this voltage.

“This streaming potential, essentially a consequence of the natural energy gathered in the plant, offers a renewable energy source that is continuous and can be sustainable over long periods,” author Suman Chakraborty said. “The question we wanted to answer was how much potential it can produce, and how is electric potential influenced by the plant’s biological clock?”

To find out, the authors inserted electrodes into the stems of water hyacinths and attached reservoirs with electrodes to pieces of lucky bamboo to closely examine how electrical potential changes depending on types of ions, ion concentration, and the pH of the fluid flowing through the plants.

“Our eureka moment was when our first experiments showed it is possible to produce electricity in a cyclic rhythm and the precise linkage between this and the plant’s inherent daily rhythm,” Chakraborty said. “We could exactly pinpoint how this is related to water transpiration and the ions the plant carries via the ascent of sap.”

The study quantified the voltage response originating from the movement of ions through the plant’s pathways that align uniquely with the plant’s daily rhythms. The authors discovered plants can actively moderate the flow of fluid or sap in sync with the day and night cycles. They also found the electric streaming potential increases with decreased concentration of ions or increased pH in the fluid.

“We not only rediscovered the plant’s electrical rhythm, articulating it in terms of voltages and currents, but we also provided insight into potentially tapping electrical power output from plants in a sustainable manner with no environmental impact and no disruption to the ecosystem,” Chakraborty said. “The findings could help develop biomimetic, nature-inspired systems that can address the global energy crisis with an eco-friendly, sustainable solution in which planting a tree not only relieves the crises of climate change and declining environmental quality, but also provides a way to harness electricity from it.”

###

The article “How does the diurnal biological clock influence electrokinetics in a living plant?” is authored by Aniruddha Guha, Saumyadwip Bandyopadhyay, Chirodeep Bakli, and Suman Chakraborty. It will appear in Physics of Fluids on May 28, 2024 (DOI: 10.1063/5.0195088). After that date, it can be accessed at https://www.doi.org/10.1063/5.0195088.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0195088

Article Title

How does the diurnal biological clock influence electrokinetics in a living plant?

Article Publication Date

28-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Metalloligand-Driven Cobalt Catalyst Achieves Anti-Markovnikov Hydrosilylation of Alkynes Using Tertiary Silanes

September 22, 2025
blank

SwRI Leads IMAP Payload Development for Upcoming Mission to Map Heliosphere Boundary

September 22, 2025

Radical C–C Coupling Boosts CO₂ Electroreduction

September 22, 2025

Inside the Chemistry: Exploring the Process of Ammonia Synthesis

September 22, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhanced Lithium Storage with Needle-Shaped Ni-MOF/GR Anode

New PET Tracer Allows Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers

Penn State Health’s Patient-Centered Quality Metric Reframing Project Sets New Standard for Future Quality Metrics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.