• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Harnessing green energy from plants depends on their circadian rhythms

Bioengineer by Bioengineer
May 28, 2024
in Chemistry
Reading Time: 3 mins read
0
Plant hydraulics and the biological process
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, May 28, 2024 —When plants draw water from their roots to nourish their stems and leaves, they produce an electric potential that could be harnessed as a renewable energy source. However, like all living things, plants are subject to a circadian rhythm — the biological clock that runs through day and night cycles and influences biological processes. In plants, this daily cycle includes capturing light energy for photosynthesis and absorbing water and nutrients from the soil during the day and slowing its growth processes at night.

Plant hydraulics and the biological process

Credit: Aniruddha Guha

WASHINGTON, May 28, 2024 —When plants draw water from their roots to nourish their stems and leaves, they produce an electric potential that could be harnessed as a renewable energy source. However, like all living things, plants are subject to a circadian rhythm — the biological clock that runs through day and night cycles and influences biological processes. In plants, this daily cycle includes capturing light energy for photosynthesis and absorbing water and nutrients from the soil during the day and slowing its growth processes at night.

In a study published this week in Physics of Fluids, by AIP Publishing, the researchers from the Indian Institute of Technology Kharagpur detailed how biological processes produce voltage in plants and the impact of the cyclic day and night changes on this voltage.

“This streaming potential, essentially a consequence of the natural energy gathered in the plant, offers a renewable energy source that is continuous and can be sustainable over long periods,” author Suman Chakraborty said. “The question we wanted to answer was how much potential it can produce, and how is electric potential influenced by the plant’s biological clock?”

To find out, the authors inserted electrodes into the stems of water hyacinths and attached reservoirs with electrodes to pieces of lucky bamboo to closely examine how electrical potential changes depending on types of ions, ion concentration, and the pH of the fluid flowing through the plants.

“Our eureka moment was when our first experiments showed it is possible to produce electricity in a cyclic rhythm and the precise linkage between this and the plant’s inherent daily rhythm,” Chakraborty said. “We could exactly pinpoint how this is related to water transpiration and the ions the plant carries via the ascent of sap.”

The study quantified the voltage response originating from the movement of ions through the plant’s pathways that align uniquely with the plant’s daily rhythms. The authors discovered plants can actively moderate the flow of fluid or sap in sync with the day and night cycles. They also found the electric streaming potential increases with decreased concentration of ions or increased pH in the fluid.

“We not only rediscovered the plant’s electrical rhythm, articulating it in terms of voltages and currents, but we also provided insight into potentially tapping electrical power output from plants in a sustainable manner with no environmental impact and no disruption to the ecosystem,” Chakraborty said. “The findings could help develop biomimetic, nature-inspired systems that can address the global energy crisis with an eco-friendly, sustainable solution in which planting a tree not only relieves the crises of climate change and declining environmental quality, but also provides a way to harness electricity from it.”

###

The article “How does the diurnal biological clock influence electrokinetics in a living plant?” is authored by Aniruddha Guha, Saumyadwip Bandyopadhyay, Chirodeep Bakli, and Suman Chakraborty. It will appear in Physics of Fluids on May 28, 2024 (DOI: 10.1063/5.0195088). After that date, it can be accessed at https://www.doi.org/10.1063/5.0195088.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0195088

Article Title

How does the diurnal biological clock influence electrokinetics in a living plant?

Article Publication Date

28-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025
blank

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025

Metal-Hydroxyls Drive Proton Transfer in O–O Formation

November 15, 2025

What Insights Do Polymers Offer for Advancing Alzheimer’s Disease Treatment?

November 15, 2025

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    117 shares
    Share 47 Tweet 29
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic Diversity of 10 DIP-STR Markers in US Groups

ML Unlocks Key SNPs for Population Assignment

Maternal MSG Exposure Triggers Inflammation, Metabolic Issues

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.