• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Harder for T cells to fight cancer in absence of VEGF-A

Bioengineer by Bioengineer
November 13, 2017
in Science News
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Contrary to what was previously believed, the immune system's cancer-killing T cells are more effective in a tumour's anoxic environment when they have access to growth factor VEGF-A. In a study from Karolinska Institutet published in Cancer Cell, the researchers show how the T cells not only survive in this oxygen-depleted micro-environment with the help of transcription factor HIF-1a but also become more effective at killing cancer cells inside it.

Cytotoxic T cells are important for the immune system in their ability to kill tumour cells. When the T cells enter a tumour, they are thought to exploit transcription factor HIF, which like all transcription factors is a protein that regulates gene expression and thus the function of the cell. Transcription factor HIF is also especially able to help the T cells to adapt to the tumour's anoxic micro-environment.

The researchers now show that it is the variant HIF-1a that enabled the T cells to adapt to this oxygen-depleted environment and thus succeed in killing the tumour. After having analysed the variant HIF-2a they found that it was less important than HIF-1a for the T cells' ability to adapt to the lack of oxygen and fight the tumour.

"We observed that the T cells detect oxygen, and by adapting to a limited amount of oxygen they can enter anoxic tumours, survive within them and then effectively kill them," says Professor Randall Johnson at Karolinska Institutet's Department of Cell and Molecular Biology, who led the study.

The researchers also used mouse models to try to knock out VEGF-A (a growth factor that makes blood vessels grow and one of HIF's target genes) from their T cells.

"Doing this, we found that the tumours grew and that the formation of new blood vessels changed," explains Professor Johnson. "This is interesting because it was previously thought that tumours starve when you reduce VEGF-A. Our research shows that things are more complex than this. I hope that our discovery will lead to better tumour therapy that maximises the effect of the T cells."

###

The study was financed by the Wellcome Trust Research Fellowship, the Swedish Cancer Society, the Swedish Childhood Cancer Foundation, the Swedish Research Council, the US National Institutes of Health and the Marie Curie IEF fellowship.

Publication: "An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression", Asis Palazon, Petros A. Tyrakis, David Macias, Pedro Velica, Helene Rundqvist, Susan Fitzpatrick, Nikola Vojnovic, Anthony T. Phan, Niklas Loman, Ingrid Hedenfalk, Thomas Hatschek, John Lövrot, Theodoros Foukakis, Amanda W. Goldrath, Jonas Bergh, Randall S. Johnson. Cancer Cell, online 13 November 2017, doi: 10.1016/j.ccell.2017.10.003

Media Contact

Press Office, Karolinska Institutet
[email protected]
@karolinskainst

http://ki.se/english

http://dx.doi.org/10.1016/j.ccell.2017.10.003

Share12Tweet8Share2ShareShareShare2

Related Posts

PD-1 Inhibitors Enhance Outcomes After CD19 CAR-T

November 9, 2025

Building Inclusive Retirement Home Policies: A Study

November 9, 2025

Desmopressin’s Role in Renal Biopsy Bleeding Outcomes

November 9, 2025

Impact of Perfluoroalkyl Substances on E. coli Phases

November 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PD-1 Inhibitors Enhance Outcomes After CD19 CAR-T

Building Inclusive Retirement Home Policies: A Study

Desmopressin’s Role in Renal Biopsy Bleeding Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.