• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Half a million lives could be saved yearly by replacing wood and charcoal stoves in Africa

Bioengineer by Bioengineer
January 12, 2023
in Science News
Reading Time: 5 mins read
0
Gathering firewood for cooking
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Half a million lives could be saved each year in sub-Saharan Africa by taking action to reduce reliance on traditional wood- and charcoal-burning stoves, a new study shows. Researchers at KTH Royal Institute of Technology in Stockholm today published an open-source, data-based tool that local policymakers across the region can use to cost-effectively correct what the researchers call a “market failure” in delivering alternatives to traditional cooking methods.

Traditional wood- and charcoal-burning stoves are a centrepiece of millions of homes in Africa, as well as in other developing regions of the world, but costs and benefits of quitting them vary from place to place. The OnStove geospatial tool provides a data-based way to calculate for each square kilometer the costs and benefits locally for transitioning to alternatives such as gas and electric stoves.

OnStove modelling shows that replacing traditional wood- and charcoal-burning stoves in sub-Saharan Africa could avert as many as 463,000 deaths every year, with a healthcare cost savings of $66 billion, says Associate Professor Francesco Fuso-Nerini, the Director of the KTH Climate Action Centre at KTH Royal Institute of Technology. Reaching that goal would require a net capital investment of $7.5 billion to provide alternatives, such as gas and electric stoves, as well as improved wood-burning stoves that safely redirect emissions.

“That may seem high, but it is only around 0.5 percent of what is spent annually in the world on energy investments,” Fuso-Nerini says.

The OnStove project research team, based at the Division of Energy Systems at KTH Royal Institute of Technology, published its findings in Nature Sustainability. In collaboration with the UN Foundation’s Clean Cooking Alliance and the World Resource Institute, the tool has been applied to support the Nepal government’s energy policies. The researchers have also begun working with the Kenyan government to support its aims to transition toward what is known as “clean cooking.”

“It was well received where we started to use it. There’s a lot of interest from other organizations and governments,” Fuso-Nerini says. “But it’s a complex issue and this is one of the first tools that gives good information and a good picture of what you would need to transition away from these bad ways of cooking.”

Fuso-Nerini says the tool supports policymaking by assigning actual value to traditional cooking methods’ negative aspects, such as respiratory disease or lost time due to collecting wood or other burnable biomass.

“These values give a better understanding about costs and benefits of clean cooking,” he says. “That enables governments need to step in and take a broad view that moves people in the right direction.”

Donee Alexander, Chief Science and Learning Officer for the Clean Cooking Alliance, says the organization’s partnership with KTH Royal Institute of Technology will continue to incorporate new features into OnStove, to use in support of governments taking a data-driven approach to achieving clean cooking targets. “The Clean Cooking Alliance is thrilled about the release of OnStove as geospatial tools have a vital role to play in identifying areas where clean cooking solutions are needed most, and to target evidence-based interventions to those areas,” Alexanders says.

KTH researcher Babak Khavari co-led the study, which was also co-authored by Camilo Ramirez Gomez. The study also involved Sanford School of Public Policy and the Duke Global Health Institute.

Gathering firewood for cooking

Credit: Youssef Boulkaid, 2022

Half a million lives could be saved each year in sub-Saharan Africa by taking action to reduce reliance on traditional wood- and charcoal-burning stoves, a new study shows. Researchers at KTH Royal Institute of Technology in Stockholm today published an open-source, data-based tool that local policymakers across the region can use to cost-effectively correct what the researchers call a “market failure” in delivering alternatives to traditional cooking methods.

Traditional wood- and charcoal-burning stoves are a centrepiece of millions of homes in Africa, as well as in other developing regions of the world, but costs and benefits of quitting them vary from place to place. The OnStove geospatial tool provides a data-based way to calculate for each square kilometer the costs and benefits locally for transitioning to alternatives such as gas and electric stoves.

OnStove modelling shows that replacing traditional wood- and charcoal-burning stoves in sub-Saharan Africa could avert as many as 463,000 deaths every year, with a healthcare cost savings of $66 billion, says Associate Professor Francesco Fuso-Nerini, the Director of the KTH Climate Action Centre at KTH Royal Institute of Technology. Reaching that goal would require a net capital investment of $7.5 billion to provide alternatives, such as gas and electric stoves, as well as improved wood-burning stoves that safely redirect emissions.

“That may seem high, but it is only around 0.5 percent of what is spent annually in the world on energy investments,” Fuso-Nerini says.

The OnStove project research team, based at the Division of Energy Systems at KTH Royal Institute of Technology, published its findings in Nature Sustainability. In collaboration with the UN Foundation’s Clean Cooking Alliance and the World Resource Institute, the tool has been applied to support the Nepal government’s energy policies. The researchers have also begun working with the Kenyan government to support its aims to transition toward what is known as “clean cooking.”

“It was well received where we started to use it. There’s a lot of interest from other organizations and governments,” Fuso-Nerini says. “But it’s a complex issue and this is one of the first tools that gives good information and a good picture of what you would need to transition away from these bad ways of cooking.”

Fuso-Nerini says the tool supports policymaking by assigning actual value to traditional cooking methods’ negative aspects, such as respiratory disease or lost time due to collecting wood or other burnable biomass.

“These values give a better understanding about costs and benefits of clean cooking,” he says. “That enables governments need to step in and take a broad view that moves people in the right direction.”

Donee Alexander, Chief Science and Learning Officer for the Clean Cooking Alliance, says the organization’s partnership with KTH Royal Institute of Technology will continue to incorporate new features into OnStove, to use in support of governments taking a data-driven approach to achieving clean cooking targets. “The Clean Cooking Alliance is thrilled about the release of OnStove as geospatial tools have a vital role to play in identifying areas where clean cooking solutions are needed most, and to target evidence-based interventions to those areas,” Alexanders says.

KTH researcher Babak Khavari co-led the study, which was also co-authored by Camilo Ramirez Gomez. The study also involved Sanford School of Public Policy and the Duke Global Health Institute.



Journal

Nature Sustainability

DOI

10.1038/s41893-022-01039-8

Method of Research

Data/statistical analysis

Subject of Research

People

Article Title

A geospatial approach to understanding clean cooking challenges in sub-Saharan Africa

Article Publication Date

12-Jan-2023

COI Statement

None reported

Share12Tweet8Share2ShareShareShare2

Related Posts

Advances in Asthma Therapeutics Unveiled

September 19, 2025

Persistent Cough Reveals Mysterious Endobronchial Mass

September 19, 2025

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

September 19, 2025

2025 Ig Nobel Prize Awarded for Perfecting the Science of Pasta Sauce

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.