• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Gut microbiota helps to maintain core body temperature under cold exposure

Bioengineer by Bioengineer
March 6, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: QI Lei

The gut microbiome has been shown to have diverse impacts on human and animal physiology and health.

Now, a research group led by Prof. John R. Speakman from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, has revealed the important role of gut microbiota in thermoregulation – the way animals respond to cold exposure.

During cold exposure it is well established that animals sustain their body temperature by activating heat production from a specialized tissue known as Brown Adipose Tissue (BAT) and promoting “browning” of white adipose tissue.

To evaluate the function of gut microbiota in the activation of BAT, researchers used different antibiotic recipes to eradicate gut microbiota. They subsequently found that animals lacking gut microbiota had impaired thermoregulation.

The results were also confirmed in germ-free mice. Specifically, the researchers found that removal of the gut microbiota blunted the increase in the expression of uncoupling protein 1 (UCP1) in BAT and reduced white adipose tissue browning.

This effect could be because, in the absence of an intact microbiome, the animal is unable to digest sufficient quantities of food to meet elevated energy demands in the cold, and the impact on BAT is a secondary effect.

However, the team also showed that gavage of the bacterial metabolite butyrate increased the thermogenic capacity of ABX-treated mice, reversing the deficit. This suggests that microbiota plays an important signaling role in the process that stimulates cold-induced thermogenesis.

This research adds to the expanding areas of physiology and health that are impacted by the gut microbiome. Although the work was conducted in mice, and extensions to humans must be made cautiously, it may have several health implications.

In particular, elderly people have many problems raising an adequate thermoregulation response to the cold, which makes them susceptible to hypothermia. It will be interesting to discover if known changes in the human microbiome with age contribute to this effect, and if modulating the age-related changes in the microbiome will afford elderly people more protection.

This study was published in Cell Reports on March 5, and was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences and the Natural Science Foundation of China.

###

Media Contact
QI Lei
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/201903/t20190305_206197.shtml

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2019.02.015

Tags: BacteriologyBiologyCell BiologyMicrobiologyMolecular Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Proteomics and Metabolomics Reveal Milk Product Integrity

November 5, 2025
Can Targeting Cellular Aging Unlock New Treatments for Metabolic Diseases?

Can Targeting Cellular Aging Unlock New Treatments for Metabolic Diseases?

November 5, 2025

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

November 5, 2025

Evaluating PR1 Genes in Mung Bean’s Pathogen Response

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mailed Activation Letters Boost Blood Pressure Control Effectiveness

Proteomics and Metabolomics Reveal Milk Product Integrity

Rickettsia felis-Inspired Meningoencephalitis in Child: Case Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.