• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Growing tumors put the pressure on nutrient-supplying blood vessels

Bioengineer by Bioengineer
January 26, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Vavourakis et al.

Mechanical pressure caused by cancer growth plays a key role in the development and distribution of blood vessels in tumors, according to a new UCL (University College London) study published in PLOS Computational Biology.

Previous research has shown that solid tumors (lung and brain tumors, for example) use biochemical signals to trigger the growth of new blood vessels that deliver nutrients and promote tumor growth. However, little is known about how mechanical forces exerted by a growing tumor affect these blood vessels.

In the new study, Vasileios Vavourakis of UCL and colleagues developed a three-dimensional computational model to simulate tumor-induced blood vessel development. Unlike previous models that only considered biochemical processes, their model also incorporates the mechanical processes at play during tumor growth.

Using the new model, the researchers demonstrated that a growing tumor can compress and sometimes collapse blood vessels, thus, blocking blood flow to parts of the tumor. This could deprive the tumor of oxygen and cause it to behave more invasively. It could also cause drugs to be delivered unevenly throughout the tumor, reducing the efficacy of treatment.

To help validate the model, the scientists compared its output with real-life observations of blood vessel formation in mice with cancer. They found that the model more accurately simulated blood vessel growth and distribution when mechanical processes–not just biochemical cues–were incorporated.

"The next steps of our research are to combine our computational modeling platform with experimental investigations to improve the delivery of anti-cancer drugs and the efficacy of radiotherapy," Vavourakis says. "Our aim is to reduce the dependence on animal studies in developing anti-cancer therapies, and to design more effective human clinical trials."

###

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005259

Citation: Vavourakis V, Wijeratne PA, Shipley R, Loizidou M, Stylianopoulos T, Hawkes DJ (2017) A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth. PLoS Comput Biol 13(1): e1005259.doi:10.1371/journal.pcbi.1005259

Funding: VV is supported by a Marie Curie Intra-European Fellowship grant (FP7-PEOPLE-2013-IEF, 627025). PAW and DJH were supported by a European FP7 project (FP7-ICT-2011-9, 601040) and an Engineering & Physical Sciences Research

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Vasileios Vavourakis
[email protected]

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Xanthan Gum Production with Essential Oil By-products

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025
Groundwater Pesticide Contamination: Challenges and Solutions

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

September 13, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.